Claim Missing Document
Check
Articles

Found 32 Documents
Search

Algoritma Backpropagation untuk Memprediksi Korban Bencana Alam Nur Nafi'iyah; Ahmad Ahmad Salaffudin1; Nur Qomariyah Nawafilah
SMATIKA JURNAL : STIKI Informatika Jurnal Vol 9 No 02 (2019): SMATIKA Jurnal : STIKI Informatika Jurnal
Publisher : LPPM UBHINUS MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/smatika.v9i02.400

Abstract

Indonesia is a country prone to natural disasters. Because Indonesia is a maritime country and its geographical area is Mount Merapi. In order to reduce victims of natural disasters or other disasters, we conducted research related to predictions of victims of natural disasters. The purpose of this study is to help the team or related parties in preparing themselves to deal with the victims of a growing natural disaster. The algorithm used in predicting victims of natural disasters is backpropagation. The data used in this study is the DIBI dataset taken from the Google dataset. The predicted impact was 5128 lines, 524 missing victims, 2653 injured, 941 lines dead. Each dataset with each category of disaster impacts, missing victims, injured victims, and death victims was made of 2 input variables. Input variables from each category are district code, and year and the output variable is the number of disaster victims. Neural network structure and architecture of this study, namely 2 input layer nodes, 2 hidden layer nodes, and 1 output layer node. From the architecture, training and testing were carried out, where the results of testing disaster impact data were 110 lines of MSE value of 0.0371, testing results of wounded victims data as much as 53 lines of MSE value of 0.0256, results of testing of missing victims as much as the 24 lines of the MSE value are 0.041, and the results of testing of the dead are 41 lines of the MSE value of 0.029.
Konstruksi dan Validasi Asesmen Diagnostik Materi Aljabar: Upaya Mitigasi Learning Loss Numerasi Siswa Sekolah Menengah Pertama Nawafilah, Nur Qomariyah; Hanifah, Ayu Ismi; Masruroh, Masruroh
Center of Education Journal (CEJou) Vol. 6 No. 2 (2025): Central Journal of Education (CEJou) Desember In Press
Publisher : Universitas Nahdlatul Ulama Pasuruan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55757/cejou.v6i2.1085

Abstract

Pendidikan matematika di era industri 4.0 menuntut literasi numerasi yang kuat, namun rendahnya ketuntasan belajar siswa SMP pada materi bilangan dan operasi aljabar akibat miskonsepsi yang tidak terdeteksi menjadi hambatan krusial. Penelitian ini bertujuan untuk mengembangkan instrumen asesmen diagnostik yang valid dan reliabel guna mengukur kemampuan matematis sekaligus memetakan pola kesalahan sistematis siswa SMP. Menggunakan metode penelitian dan pengembangan (R&D) dengan model ADDIE (Analysis, Design, Development, Implementation, Evaluation), instrumen ini dirancang dengan distraktor soal berbasis temuan miskonsepsi empiris. Hasil penelitian menunjukkan bahwa instrumen yang dikembangkan memenuhi kriteria kelayakan sangat tinggi berdasarkan validasi ahli materi dan media, serta menunjukkan konsistensi internal yang reliabel melalui uji coba lapangan. Instrumen ini mampu membedakan antara kesalahan teknis dan miskonsepsi struktural dalam transisi kognitif siswa dari aritmatika ke simbol variabel aljabar. Kesimpulannya, asesmen diagnostik ini efektif digunakan sebagai sarana "penyembuhan pembelajaran" dan pendukung strategi pembelajaran berdiferensiasi di sekolah menengah. Produk ini memberikan solusi praktis bagi guru untuk melakukan intervensi pedagogis yang tepat sasaran berdasarkan data empiris kognitif siswa.