Claim Missing Document
Check
Articles

Found 15 Documents
Search
Journal : Proceeding of the Electrical Engineering Computer Science and Informatics

Design and Implementation of Web-based Church Information Systems (Case Study : HKBP Kebon Jeruk) Armando Ondihon Kristoper Purba; Supardi Supardi; Ernawati Dewi; Meilieta Anggriani Porrie; Muhammad Syafrullah
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 6: EECSI 2019
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v6.2001

Abstract

HKBP Kebon Jeruk Church has a lot of data consisting of church data, Pastor data, Church server data, family data, marital data, baptismal data, and also about church agenda such as the schedule of activities Church, schedule of church service. The problem in HKBP Kebon Jeruk is that the Data is provided and managed manually, as well as difficulties in finding the necessary information. Therefore, the system needs to be built by the HKBP Kebon Jeruk Church to request church management data.The method used in the HKBP Kebon Jeruk system is the Extreme Programming method, and the analysis used is the PIECES analysis. The result of this research is to build the HKBP Kebon Jeruk system according to the needs of the user.
Implementation of Image Segmentation Techniques to Detect MRI Glioma Tumour Siti Rafidah Binti Kassim; Setyawan Widyartoh; Mohammad Syafrullah; Krisna Adiyarta; Widya Kumala Sari
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 6: EECSI 2019
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v6.2011

Abstract

Image identification to detect a tumour needs several stages of image processing along with identifying analysis. To get an accurate segmentation of the tumour contour and to identify brain tumour based on brain magnetic resonance imaging (MRI), a suitable techniques and stages of image processing are required to be applied. One technique of mid-level image processing became an objective this work. The objective of the study is to segment the boundary of tumour by applying the Modification of Region Fitting (MRF) method in term of data fitting. The performance of the Region Scalable Fitting (RSF) method and Modified Region Scalable Fitting (MRSF) is evaluated by comparing the number of iterations. As the result, the MRF method has successfully segmented the initial region of braintumour images.
Person tracking with non-overlapping multiple cameras Sanjay Kumar Sonbhadra; Sonali Agarwal; Muhammad Syafrullah; Krisna Adiyarta
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2049

Abstract

Monitoring and tracking of any target in a surveillance system is an important task. When these targets are human then this problem comes under person identification and tracking. At present, large scale smart video surveillance system is an essential component for any commercial or public campus. Since field of view (FOV) of a camera is limited; for large area monitoring, multiple cameras are needed at different locations. This paper proposes a novel model for tracking a person under multiple non-overlapping cameras. It builds the reference signature of the person at the beginning of the tracking system to match with the upcoming signatures captured by other cameras within the specified area of observation with the help of trained support vector machine (SVM) between two cameras. For experiments, wide area re-identification dataset (WARD) and a real-time scenario have been used with color, shape and texture features for person's re-identification.
Email classification via intention-based segmentation Sanjay Kumar Sonbhadra; Sonali Agarwal; Muhammad Syafrullah; Krisna Adiyarta
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2084

Abstract

Email is the most popular way of personal and official communication among people and organizations. Due to untrusted virtual environment, email systems may face frequent attacks like malware, spamming, social engineering, etc. Spamming is the most common malicious activity, where unsolicited emails are sent in bulk, and these spam emails can be the source of malware, waste resources, hence degrade the productivity. In spam filter development, the most important challenge is to find the correlation between the nature of spam and the interest of the users because the interests of users are dynamic. This paper proposes a novel dynamic spam filter model that considers the changes in the interests of users with time while handling the spam activities. It uses intention-based segmentation to compare different segments of text documents instead of comparing them as a whole. The proposed spam filter is a multi-tier approach where initially, the email content is divided into segments with the help of part of speech (POS) tagging based on voices and tenses. Further, the segments are clustered using hierarchical clustering and compared using the vector space model. In the third stage, concept drift is detected in the clusters to identify the change in the interest of the user. Later, the classification of ham emails into various categories is done in the last stage. For experiments Enron dataset is used and the obtained results are promising.
Aggressive driving behaviour classification using smartphone's accelerometer sensor Sanjay Kumar Sonbhadra; Sonali Agarwal; Muhammad Syafrullah; Krisna Adiyarta
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2091

Abstract

Aggressive driving is the most common factor of road accidents, and millions of lives are compromised every year. Early detection of aggressive driving behaviour can reduce the risks of accidents by taking preventive measures. The smartphone's accelerometer sensor data is mostly used for driving behavioural detection. In recent years, many research works have been published concerning to behavioural analysis, but the state of the art shows that still, there is a need for a more reliable prediction system because individually, each method has it's own limitations like accuracy, complexity etc. To overcome these problems, this paper proposes a heterogeneous ensemble technique that uses random forest, artificial neural network and dynamic time wrapping techniques along with weighted voting scheme to obtain the final result. The experimental results show that the weighted voting ensemble technique outperforms to all the individual classifiers with average marginal gain of 20%.
Co-Authors Abdul Rahman Abdul Rahman Wahid Abhishek Abhishek Abhishek Singh Abhishek, Abhishek Achmad Maulana Achmad Solichin Adiyarta, Krisna Agarwal, Prachi Agarwal, Sonali Agarwal, Sonali Agarwal, Sonali Agung Darmawan Agus Riyanto Alvian Winata, Arif Andrico Andrico Anggraini, Triana Aria Mustofa Hidayat Armando Ondihon Kristoper Purba Arumgam, Yogesvaran Bayuaji, Luhur Darmawan, Agung Devit Setiono Dewi Kusumaningsih Dewi, Ernawati Dhannuri, Syam Prasad Dwi Pebranti Dwi Pebrianti Elizabeth Yohanes Emil Salim Ernawati Dewi Esti Setiasih Gaol, GA Monang Lumban Hadi Syahrial Hadjianto, Mardi Hanif, Raihan Labib Indra Riyanto Indra Riyanto Irawan Irawan Irawan Irawan Jamhari Jamhari Java, Muhammad Arya K Singh Kalyzta, Juan Kassim, Siti Rafidah Binti Krisna Adiyarta Kusumaningsih, Dewi Luhur Bayuaji M. Ivan Putra Eriansya Makhdum Rosadi Martono Martono Maulidia, Mia Meilieta Anggriani Porrie Mohammad Fadhil Abas Muhammad Azhar Mujahid Muhammad Azhar Rasyad Muhammad Hasanul Huda Mutiarawan, Rezza Anugrah Nagabhushan, P. Narinder Punn Nugraha Abdullah, Indra Nurnajmin Qasrina Ann Nurnajmin Qasrina Ann Ayop P. Nagabhushan Painem, Painem Pandu Pradinata Pebranti, Dwi Porrie, Meilieta Anggriani Prachi Agarwal Prasetiamaolana, Eko Pudoli, Ahmad Punn, Narinder Purba, Armando Ondihon Kristoper Purwanto Purwanto Qasrina Ann Ayop, Nurnajmin Rakesh Kumar Yadav Ramdhan, Syaipul Ratna Kusumawardani Ratna Kusumawardani, Ratna Rezza Anugrah Mutiarawan Rianto, Yan Ridho Saputra Rizki Aji Wibowo Roeswidiah, Ririt Rusdah Rusdah Ruwirohi, Jan Everhard S. Venkatesan Sadhana Tiwari Sambhavi Tiwari Samidi Samidi Sanjay Kumar Sonbhadra Sanjay Kumar Sonbhadra Sari, Widya Kumala Setyawan Widyartoh Shekhar Verma Shkehar Verma Singh, Abhishek Singh, K Siti Rafidah Binti Kassim Sonali Agarwal Sonali Agarwal Sonali Agarwal Sonbhadra, Sanjay Kumar Sonbhadra, Sanjay Kumar Sumarudin, Muhammad Supardi Supardi Supardi Supardi Supardi, Supardi Syaddad, Muhammad Sulthan Syaiful Anwar Syaipul Ramdhan Syam Prasad Dhannuri Thisa Tri Utami Tiwari, Sadhana Tiwari, Sambhavi Tutik Sri Susilowati Venkatesan, S. Verma, Shekhar Verma, Shkehar Victor Ilyas Sugara Widdy Chandra Permana Widya Kumala Sari Widyartoh, Setyawan Windarto, Windarto Yadav, Rakesh Kumar Yan Rianto Yodi Susanto Yogesvaran Arumgam Yulianawati Yulianawati Yulianawati Zulkarnaen Noor Syarif