Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Engineering, Science and Information Technology

Oyster Shell Waste (Crassostrea Gigas) as A Cheap Adsorbent for Adsorption Of Methylene Blue Dyes: Equilibrium and Kinetics Studies Muhammad Muhammad; Meriatna Meriatna; Nia Afriani; Rizka Mulyawan
International Journal of Engineering, Science and Information Technology Vol 1, No 4 (2021)
Publisher : Master Program of Information Technology, Universitas Malikussaleh, Aceh Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (762.771 KB) | DOI: 10.52088/ijesty.v1i4.178

Abstract

In this study, Oyster (Crassostrea gigas) shell powder which contains calcium carbonate (CaCO3) was converted into calcium oxide (CaO). The Oyster shell powder that had been activated was utilized for the adsorption of the methylene blue (MB) dyeing material, which is one of waste water concerns. Oyster shells were crushed and sieved into 100 mesh sized powder and then calcinated at a temperature of 600℃ and 800℃ both for 4 hours period. To determine the adsorption equilibrium, methylene blue (MB) solution was used with varying concentration from 10 to 50 mg/L in which the adsorbent weighing 3 g was put into a conical flash and shaken until the adsorption equilibrium was reached. As for the adsorption kinetics, 250 mL MB solution was used with initial concentrations of 10, 20 and 30 mg/L, with an adsorbent weight of 3 g and a solution at pH 11 for each concentration. The evaluation of the experimental data from the adsorption process is well explained by the Freundlich equation, with the correlation coefficient value (R2) found to be 0.9999, where the value of the adsorption intensity (n) is close to unity; this shows that the adsorption is multilayer or in other words the adsorption energy is heterogeneous. The kinetics study also shows that pseudo second-order model is the most applicable to the adsorption process. From the pseudo-second-order model, with the correlation coefficient between 0.9984 - 0.9999 can explain that the methylene blue (MB) adsorption process is chemically based sorption or in other words termed as chemisorption.
A Review Of Reverse Osmosis Membrane Fouling: Formation and Control Rizka Mulyawan; Agam Muarif
International Journal of Engineering, Science and Information Technology Vol 1, No 3 (2021)
Publisher : Master Program of Information Technology, Universitas Malikussaleh, Aceh Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.745 KB) | DOI: 10.52088/ijesty.v1i3.127

Abstract

Membrane application in reverse osmosis (RO) membrane is getting more attention especially in producing drinking water. However, RO membrane faces challenges that reduces its performance such as its permeation flux, salt rejection, additional energy demand, lifetime decrease, extra pre-treatment process, cleaning and maintenance. The challenge is the formation of fouling. RO membrane fouling can happen inside or outside the membrane and the characteristics of membrane fouling differs from one type to other types, depending on the nature and location of membrane fouling. There are several types of RO fouling, which are Biofouling, Organic Fouling, Inorganic Fouling and Colloidal Fouling. The causes of RO membrane are different from one to another. The properties and materials of the  solution entering RO membrane are important as it affects the type of fouling of RO membrane fouling. All of the RO membrane foulings need to be considered during membrane usage and demand solution to be controlled. In order to control the fouling in Reverse Osmosis membrane, there have been several control solutions discovered to the membrane fouling challenges. The control solutions are specified to each one of the fouling, in spite of wide applications for some of it. The control solutions are pre-treatment, which has many methods such as photo oxidation, coagulation, scale inhibitor, ion exchange resins, granular media and membrane    treatment, membrane monitoring, membrane cleaning, surface modification, and material addition to membrane or novel membrane   material. With various control solutions discovered, the RO membrane still faces fouling issue and is still demanding some more    advanced applicable control solutions.
Methyl Orange Absorption Using Chitosan from Shrimp Skin as an Adsorbent Meriatna Meriatna; Sanda Mulia Utari; Rizka Mulyawan; Muhammad Muhammad; Zulmiardi Zulmiardi
International Journal of Engineering, Science and Information Technology Vol 3, No 2 (2023)
Publisher : Department of Information Technology, Universitas Malikussaleh, Aceh Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v3i2.431

Abstract

In the coloring process, the textile industry generally uses synthetic (artificial) dyes, methyl orange (MO). In this study, the adsorption of methyl orange (MO) dye with chitosan was investigated in a series of batch laboratory studies. The adsorption equilibrium study used a MO solution with a concentration of 10 to 50 mg/L with an adsorbent weight of 3 g put into an Erlenmeyer and shaken until the adsorption reached an equilibrium condition. Meanwhile, the adsorption kinetics used a MO solution with an initial concentration of 10 and 20 mg/L with a volume of 100 mL with an adsorbent weight of 3 g and the solution was adjusted to pH 2. Effective operating parameters such as pH, initial concentration of dye (C0) and contact time at adsorption has been investigated. The results showed that the adsorption capacity of methyl orange (MO) dye from chitosan increased with an increasing acid content, and it was found that a solution of pH 2 was the optimal pH value for MO adsorption. The adsorption parameters for the Langmuir and Freundlich isotherms were determined by nonlinear regression and the equilibrium data were best explained by the Langmuir isotherm model, this was indicated by the high value of the correlation coefficient (R2), which was 0.9595. The maximum adsorption capacity was 0.1297 mg/g. Adsorption kinetics can be successfully applied to pseudo second-order kinetic models. The pseudo second-order model results show that the adsorption process is controlled by chemical sorption (chemisorption).
Synthesis and Characterization of Chitosan-Pectin-Citric Acid-Based Hydrogels for Biomedical Applications (Primary Wound Dressings) Suryati Suryati; Rizka Mulyawan; Sulhatun Sulhatun; Muhammad Muhammad; Nikmat Wanda
International Journal of Engineering, Science and Information Technology Vol 3, No 2 (2023)
Publisher : Department of Information Technology, Universitas Malikussaleh, Aceh Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v3i2.447

Abstract

This study aims to analyze the processing of chitosan-pectin biocomposite hydrogel with the addition of citric acid to improve the quality of the biocomposite for primary wound dressing applications. The method is printing the biopolymer solution in a glass mold, then drying at 50oC. Chitosan 90.2% DD and pectin dissolved in 1% acetic acid with a ratio (w/w) of 50:50. The two ingredients were mixed using a magnetic stirrer at room temperature for 30 minutes until completely dissolved, then added citric acid crosslinking agent with various concentrations of 2,4, 6,8,10 (%). The test results for the characteristics of the chitosan-pectin-acid biocomposite Citrate obtained the best thickness in the composition variation (50:50:8) of 0.31 mm. The analysis results of the best absorption of the chitosan-pectin-citric acid biocomposite on the composition variation (50:50:6) were 185%. In the swelling analysis of the chitosan-pectin-citric acid biocomposite, the variation in composition (50:50:10) was 403%. The tensile strength test results of the chitosan-pectin-citric acid biocomposite decreased with the addition of citric acid, the best obtained was 20.76 MPa, and the best elongation was 76.0%. Test results for the functional group of the chitosan-pectin-CaCl2 biocomposite for the presence of O-H, C-H, N-H bonds in the fact of O-H, C-H, N-H bonds at a wavelength of 4000-2500 cm-1, C=O, C=N, C=C at a wavelength of 2000 -1500, and the specific absorption of the chitosan-pectin-citric acid biocomposite 400-1400 cm-1 indicates that the resulting membrane tends to be polar, hydrophilic and environmentally friendly because it can be degraded. Based on the expected test results, it was shown that the chitosan-pectin-CaCl2 biocomposite has the potential to be applied as an ideal primary wound dressing for wound healing and protection.