Herdianti Darwis
Informatics Engineering, Faculty Of Computer Science, Universitas Muslim Indonesia

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 15 Documents
Search

Klasifikasi Daun Herbal Menggunakan K-Nearest Neighbor dan Support Vector Machine dengan Fitur Fourier Descriptor Putri Regina Prayoga; Purnawansyah Purnawansyah; Tasrif Hasanuddin; Herdianti Darwis
Jurnal Pendidikan Informatika (EDUMATIC) Vol 7 No 1 (2023): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v7i1.17521

Abstract

Indonesia is a rich country in herbal plants that can be used as traditional medicine. Leaves are one of the main components of herbal plants that are difficult to distinguish in texture and shape. This study aims to classify two types of herbal leaves, namely Sauropus androgynus and Moringa leaves using the K-nearest neighbor (KNN) and Support vector machine (SVM) with fourier descriptor (FD) feature extraction on texture and shape features. The research uses primary data collected through a smartphone camera as much as 480 image data with light and dark scenarios which are then divided into 80:20 training and testing data. Based on the research that has been done, it is found that the KNN for light scenario data and dark scenarios get 92% and 94% accuracy respectively. The test results using SVM with FD feature extraction obtain an accuracy of 96% for light and dark scenarios. Thus, SVM is more recommended in the classification of herbal leaf images.
K-Nearest Neighbor dan Convolutional Neural Network pada Klasifikasi Penyakit Tanaman Bawang Merah - Nurhikma; - Purnawansyah; Herdianti Darwis; Harlinda L
Techno.Com Vol 22, No 3 (2023): Agustus 2023
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v22i3.8533

Abstract

Bawang merah merupakan suatu kebutuhan masyarakat terutama pada bahan makanan dan juga digunakan untuk Kesehatan. Dengan banyaknya manfaat bawang merah, dibalik itu juga memiliki suatu kendala atau resiko pada penanaman bawang merah salah satu resikonya adalah hama atau penyakit yang dapat merugikan petani bawang merah. Tujuan dari penelitian ini yaitu mengklasifikasi penyakit daun bercak ungu dan moler pada tanaman bawang merah, yang di implementasikan menggunakan metode ekstraksi fitur Gray Level Co-Occurance Matix (GLCM) yang digunakan untuk ekstraksi fitur tekstrur. Selain itu ada lima jarak yaitu Eucludiean, Manhattan, Chebyshev, Minkowski, Hamming digunakan dalam metode klasifikasi  K-Nearest Neighbor (KNN). Penelitian ini juga menggunakan metode klasifikasi Convolutional Neural Network (CNN). Hasil dari penelitian ini yang diperoleh menggunakan metode GLCM dan KNN dengan jarak Euclidean, Manhattan, Chebyshev, dan Minkowski mendapatkan hasil akurasi yang tinggi yakni sebesar 100%, sedangkan nilai akurasi terendah terdapat pada KNN jarak Hamming nilai akurasi yaitu sebesar 42%, adapun klasifikasi dari gabungan dari metode GLCM dan CNN mendapatkan hasil akurasi sebesar 100% dan pada metode CNN yang tanpa metode ekstraksi memiliki nilai akurasi sebesar 100%.
Max Feature Map CNN with Support Vector Guided Softmax for Face Recognition Herdianti Darwis; Zahrizhal Ali; Yulita Salim; Poetri Lestari Lokapitasari Belluano
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1751

Abstract

Face recognition has made significant progress because of advances in deep convolutional neural networks (CNNs) in addressing face verification in large amounts of data variation. When image data comes from different sources and devices, the identifiability of other classes and the presence of profile face data can lead to inaccurate and ambiguous classification because other classes lack discriminatory power. Furthermore, using a complex architecture with many deep convolutional layers can become very slow in the training process due to a huge amount of Random Access Memory (RAM) usage during the reverse pass of backpropagation. In this paper, we design a light CNN architecture that addresses these challenges. Specifically, we implemented Max-feature-map (MFM) into each convolutional layer to improve the accuracy and efficiency of the CNN. The strength of the support vector-guided SoftMax (SV-SoftMax) is also used in the proposed method to emphasize misclassified points and adaptively guide feature learning. Experimental results show that the 9-Layers CNN with MFM layer and SV-SoftMax outperform VGG-19 with 96.22% validation accuracy and the second rank below FaceNet tested on the same dataset with fewer parameters. Moreover, the model performed well on data that is obtained from various capture devices such as webcam, CCTVs, phone cameras, and DSLR cameras. The implications of this research could extend to scenarios requiring face recognition technology implementation with light size, such as surveillance and authentication systems
Perbandingan Metode Naïve Bayes dan K-NN dengan Ekstraksi Fitur GLCM pada Klasifikasi Daun Herbal A. Nurjulianty; Purnawansyah Purnawansyah; Herdianti Darwis
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 4 (2023): Oktober 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i4.6262

Abstract

Indonesia is a country with various types of herbal plants that have the potential to be very effective medicines. Herbal plants have been used since ancient times as natural medicines. One part that has health benefits is the leaves, however, there are many similarities between the different types of leaves. This research aims  to classify digital images of herbal leaves implementing the Naïve Bayes and K-Nearest Neighbor (KNN) methods with Gray Level Co-occurrence Matrix (GLCM) feature extraction. The dataset consisted of sauropus androgynus and moringa leaves with data collection in bright and dark scenarios. A total of 480 data which was divided into two parts, namely 80% for training data and 20% for testing images. The KNN distances used for comparison are Euclidean, Manhattan, Chebyshev, Minkowski, and Hamming. Meanwhile, Naïve Bayes uses Gaussian, Multinomial, and Bernoulli kernels. The results of the study showed that the KNN method with the Manhattan distance obtained the best results with an accuracy rate of up to 94% in bright scenarios.
Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Purnawansyah Purnawansyah; Aji Prasetya Wibawa; Triyanna Widyaningtyas; Haviluddin Haviluddin; Cholisah Erman Hasihi; Ming Foey Teng; Herdianti Darwis
ILKOM Jurnal Ilmiah Vol 15, No 2 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i2.1759.382-389

Abstract

Indonesia is a tropical country with a diverse range of plants that ancient people used for traditional medicines. However, the similarity in shape of the leaves became an obstacle to distinguishing them. Therefore, technological advancements are expected to help identify the herbal leaves to use them right on target according to their efficacy. In this research, image classification of katuk (Sauropus Androgynus) and kelor (Moringa Oleifera) leaves is applied using 3 different algorithms i.e hybrid of Gray Level Co-Occurrence Matrix (GLCM) feature extraction and Support Vector Machine (SVM) implementing 4 kernels namely linear, RBF, polynomial, and sigmoid; hybrid of GLCM and Convolutional Neural Network (CNN); and pure CNN. A dataset of 480 images has been collected with 2 different scenarios, including bright and dark intensities. Based on the result, a hybrid of GLCM and SVM showed the highest accuracy of 96% in the dark intensity test using a linear kernel, while sigmoid obtained the lowest accuracy of 35%. On the other hand, it has been discovered that CNN obtained the highest performance in the bright intensity test with an accuracy of 98%. While in the dark intensity test, a hybrid of GLCM and CNN is superior, obtaining 96% accuracy. In conclusion, CNN is more powerful for image classification with bright intensity. For dark intensity images, both the hybrid of GLCM+SVM (linear) and the hybrid of GLCM+CNN are fairly recommended.