Articles
Temperature Calibrator with Thermocouple Based Microcontroller
Aninda Zakia Febriyanti;
Priyambada Cahya Nugraha;
Syaifudin Syaifudin
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 1 (2020): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Calibration is very important to know the temperature uniformity inside the tool. One of them is at the temperature sterilizer, dry heating sterilizer which is sterilizing the device using a high heat oven. The purpose of this study is to develop a temperature Calibrator tool as a refinement of previously made tools by measuring temperatures more than one point in order to achieve a calibration process that complies with the standard. The working method of a temperature calibration device is that the sensor will detect the temperature which then enters the IC ATMEGA 328 that has been given the program and processed in such a way that the output will be displayed on the LCD 4x20 character in the form of temperature measurement of the device. Based on the results of comparative data between the module and the comparison tool "8 Channel Thermocouple Temperature Recorder" from the BPFK Surabaya, it has the largest difference of 40C and the percentage error (1,6%) and the smallest difference of 10C and the percentage error (0,16%).
Waterbath Calibrator with Nine Channels Sensor
Mohammad Rofi'i;
Syafudin Syaifudin;
Dyah Titisari;
Bedjo Utomo
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 1 (2019): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (495.44 KB)
|
DOI: 10.35882/ijeeemi.v1i1.1
Water bath is a laboratory equipment that contains water or special liquid that can maintain the temperature under certain conditions during the specified time interval. For this reason, calibration is needed so that the temperature in the chamber waterbath is stable or not. calibration is carried out by comparing measuring instruments and measuring materials to be calibrated to traceable standards that are traceable to national and / or international standards. Based on the results of the identification of the problems mentioned above, the author makes a waterbath calibrator entitled "Waterbath Calibrator (9 channel)" which is very practical, and easy to operate. .This calibration tool uses a K type thermocouple sensor and also the output is displayed to the character LCD to make it easier for users to retrieve data, the reason for choosing a thermocouple sensor is because the error rate is +/- 1,1C while the LM35 is +/- 1,4C. The thermocouple temperature sensor can detect the chamber temperature quite well where the biggest error is obtained with a comparator of 2%, and the lowest error is 0%.
Design of Two Channel Infusion Pump Analyzer Using Photo Diode Detector
Syaifudin Syaifudin;
Muhammad Ridha Mak’ruf;
Sari Luthfiyah;
Sumber Sumber
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/ijeeemi.v3i2.5
In the medical world, patient safety is a top priority. The large number of workloads and the frequency of using the devices in the long run will affect the accuracy and accuracy of the tool. If the flow rate and volume of the syringe pump or infusion pump given to the patient are not controlled (overdose or the fluid flow rate is too high) it can cause hypertension, heart failure or pulmonary edema. Therefore, it is necessary to have a calibration, which is an application activity to determine the correctness of the designation of the measuring instrument or measuring material. The purpose of this research is to make a two channel infusion device analyzer using a photodiode sensor. The contribution of this research is that the system can display three calibration results in one measurement at the same setting and can calibrate 2 tools simultaneously. The design of the module is in the form of an infrared photodiode sensor for reading the flowrate value. This study uses an infrared photodiode sensor for channels 1 and 2 installed in the chamber. This study uses a flow rate formula that is applied to the water level system to obtain 3 calibration results. Infrared photodiode sensor will detect the presence of water flowing in the chamber from an infusion or syringe pump. Then the sensor output will be processed by STM32 and 3 calibration results will be displayed on the 20x4 LCD. This tool has an average error value on channel 1 of 3.50% and on channel 2 of 3.39%. It can be concluded that the whole system can work well, the placement and distance between the infrared photodiodes also affects the sensor readings
Nine Channels Temperature Data Logger Design for Dry Sterilizer Calibration
Syaifudin Syaifudin;
Dyah Titisari;
Tanuj Kumar
Jurnal Teknokes Vol 15 No 2 (2022): June
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/jteknokes.v15i2.243
In the process of sterilizing medical devices, a sterilizer that is able to produce an accurate and even temperature is needed. If the resulting temperature is not in accordance with the regulated temperature and is not evenly distributed, it will be fatal/damage to the material sterilized. Periodic calibration should be applied to the sterilizer to monitor its function. Based on the research that has been done, no one has done research on making a temperature data logger with 9 channels to calibrate the sterilizer. This study aims to design a temperature measuring device with 9 sensors that can measure simultaneously, so that the accuracy and the distribution of the temperature of a sterlisator can be obtained. This tool used a K thermocouple-type temperature sensor which will detect the temperature and further enters the analog signal conditioning circuit. This then enters the ATMegga 2560 which has been programmed and processed in such a way, leading to the display of the temperature on the 4x20 character LCD. Temperature measurement data will be further stored to SD Card every 10 seconds in the form of a txt file. Tests were carried out on sterilizers, continued by comparison with the Madgetech OctTemp2000 data logger. Based on the measurement and comparison data, the average error was obtained at a temperature of 50ºC with the smallest error value of 0.7% and the largest error value of 3.9%. At a temperature of 100ºC, the smallest error value is 1.6% and the largest error value is 10.5%. Furthermore, at a temperature of 120ºC, the smallest error value is 0.0% and the largest error value is 8.5%. The module resulting from this research is stable in response to temperature by looking at the very small uncertainty value. This research can be further used to help analyze the temperature distribution in a sterilizer. With these measurement results, this study is considered having a fairly high error value at several measurement points.
Design of Wet Media Digital Thermometer Calibrator Based on ATmega328p
Dyah Titisari;
Syaifudin Syaifudin;
Yoga Prabowo
Jurnal Teknokes Vol 15 No 2 (2022): June
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/jteknokes.v15i2.249
Temperature calibration is an activity that formed the relationship between values indicated by a measuring instrument or measuring system with the value - the value relating to the temperature scale that measured under certain conditions. A clinical thermometer is a device that doctors use to measure the temperature inside a patient's body. In the field of calibration, the suitability of medical device readings with the permissible standard values (tolerance values) is very necessary so that the readings are kept accurate. The purpose of this research is to make a digital wet media thermometer calibrator based on the ATmega32p to monitor the performance of the thermometer with a temperature setting of 35 °C – 40 °C in order to maintain its accuracy. The design of this calibrator consists of a wet heater circuit using a DS18B20 temperature sensor which is processed by a minimum ATmega328p system, then will be displayed on a 2x16 LCD. This tool is made to make it easier to calibrate the thermometer so that its accuracy is maintained. Thermometer calibration is done by comparing the module with a calibrated standard measuring instrument. The measurement of the instrument against the setting temperature has the smallest error of 0% and the largest of 0.25%. Meanwhile, the measurement of the instrument against a standard thermometer (which has been calibrated) has the smallest error value of 0% and the largest of -1.17%.
Analysis of Drop Sensor Accuracy in Central Infusion Peristaltic Monitoring Based on Computer Using Wireless Communication HC-11
Syaifudin Syaifudin;
Triana Rahmawati;
Siti Rohmatul Jannah;
Sandeep Kumar Gupta;
Ram Gopal
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 2 (2022): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/ijeeemi.v4i2.2
In some hospitals, the infusion is still done manually, where medical personnel observe the liquid droplets directly and then control the rate using a mechanical resistor (clamp). This method is certainly far from accurate. An infusion pump is a medical aid that functions to control and ensure the correct dose of infusion fluid given to patients treated. The purpose of this study was to analyze the accuracy of the infrared photodiode as a drop sensor based on the readings of the infusion pump monitoring system. This module consists of a photodiode infrared drop sensor module, a comparator circuit, a monostable circuit, a stepper motor, an L298N motor driver, and an ATmega328 microcontroller. The droplets were detected by an infrared photodiode sensor, then compared with a comparator and monostable circuit as an oscillator developer, and then the flow rate and residual volume readings were generated by the ATmega328 microcontroller. Next, this data has sent to the computer via the HC-11 wireless. The results of the flowrate module measurement show the highest error value of 3% at the 30 ml/hour setting and the lowest error value of 2.5% at the 60 ml/hour setting. Meanwhile, the results of the flow rate measurement using an infusion device analyzer obtained the highest error value of 4% at the setting of 30 ml/hour and 60 ml/hour, and the lowest error value of 0.8% at the setting of 100 ml/hour. Monitoring the infusion pump was designed centrally to facilitate the nurse's task in monitoring the infusion dose given to the patient accurately. Based on this research, the accuracy of the infrared sensor and photodiode is very good by looking at the existing error rate.
Luxmeter Design with Proximity Sensor to Efficiently Test Light Intensity and Distance on Lamp Operation in Hospitals
Dika Surya Rizky Rahayu;
M. Ridha Mak'ruf;
Syaifudin Syaifudin
International Journal of Advanced Health Science and Technology Vol. 1 No. 1 (2021): November
Publisher : Forum Ilmiah Teknologi dan Ilmu Kesehatan (FORITIKES)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1408.031 KB)
|
DOI: 10.35882/ijahst.v1i1.4
The lighting of the operating/surgical site depends on the quality of the lighting from the overhead light source and the reflection from the curtain. Light measurement on the operating table is very necessary because it generates light that is irradiated into the cutting wound without dazzling the cutting surface so that pathological conditions can be recognized and must provide depth contrast and anatomical relationships, to ensure this proper calibration method is needed. Long-term use of medical devices can cause changes in accuracy. Therefore, the author makes a tool to measure the intensity of light which is equipped with a distance meter. The purpose of this study was to develop a measuring instrument for measuring the intensity of light in operating lamps, namely a luxmeter by making Luxmeter equipped with a TFT Display Distance Sensor. This tool uses an ultrasonic sensor HC-SR04 to measure the distance between the light source and the sensor module and the MAX44009 sensor to measure the light intensity of the operating lamp displayed on the TFT screen. Based on the module distance setting to the roll meter, the distance error value for the measurement of the Surabaya electromedical engineering workshop lamp at the 75 cm roll meter distance setting is 0.0127% for the 100 cm roll meter distance setting is 0.0045%. The error rate of the light intensity module on the results of the measurement of light intensity on the luxmeter by setting the roll meter distance of 75 cm between the tool and the lamp of the electromedical engineering workshop is getting an error value of 0.082% lux and for the light intensity on the results of the measurement of light intensity on the luxmeter with a roll meter distance setting of 100 cm between the tool and the lamp in the electromedical engineering workshop, that is, the error value of lux is 0.055%. The design of a luxmeter equipped with a proximity sensor can measure the intensity of light and the distance between the tool and the light source and can assist in the learning process with a more effective Luxmeter design that will assist electromedics in testing operating lamps in hospitals to be more efficient.
Sensor Accuracy Analysis on Incubator Analyzer to Measure Noise and Airflow Parameters
Arrum Sekarwati;
Syaifudin Syaifudin;
Torib Hamzah;
Shubhrojit Misra
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/jeeemi.v4i3.227
Infant incubators are equipment to maintain a stable body temperature for premature babies. Premature babies need room conditioning that is close to conditions in the womb. Room conditioning is carried out in a baby incubator by providing a stable temperature, relative humidity, and measured air flow. This parameter must be controlled so as not to exceed the threshold that will harm the baby. Periodic calibration should be applied to the infant incubator to monitor its function. To ensure the availability of baby incubators according to service standards, it is necessary to conduct test (calibrate) using an incubator analyzer. The purpose of this study is to conduct further research on the incubator analyzer that focuses on discussing the accuracy of noise and airflow sensors with the gold standard. In this study, an experiment was carried out for the sensitivity level of several sensors that had been treated by giving treatment to sensors to choose sensors with good sensitivity to be assembled into one in the incubator analyzer module. The noise sensors (KY-037 and Analog Sound Sensor V2.2) were further compared with the values on the sound level meter and the airflow sensor (D6F-V03A1) was compared with the anemometer. Sensors whose values are close to the comparison values were selected to be integrated into the incubator analyzer module. The incubator analyzer module used Arduino Mega2560 as a data processor and was equipped with an SD Card for the data storage. The built incubator analyzer module was also compared to the Fluke INCU II gold standard for data analysis. The results showed that the Analog Sound Sensor V2.2 had the highest error value (-4.6%) at 32°C and the D6F-V03A1 had the ability to measure sensitivity, where the results were more accurate than INCU II. Based on the error value of the noise sensor, the V2.2 sensor can be applied to measure noise in the baby incubator and the D6F-V03A1 airflow sensor produced an accuracy of up to 3 digits behind the comma which is more accurate than the standard module. The results of the INCU analyzer from this study can be used to calibrate the baby incubator, so that the certainty of the feasibility of the baby incubator is guaranteed. This research can be used as a reference for other researchers who will develop research on incubator analyzers in the future.
Pulse Oximeter Design for SpO2 and BPM Recording on External Memory to Support the Covid-19 Diagnosis
Triwiyanto Triwiyanto;
Syaifudin Syaifudin;
Dinar Awalin Harditamara;
Faraz Masood
Jurnal Teknokes Vol 15 No 3 (2022): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/teknokes.v15i3.303
COVID-19 (coronavirus disease) is an acute respiratory illness induced by exposure to coronavirus 2 in 2019 (SARS-CoV-2). WHO confirms that there were 1.8 million registered deaths in 2020 and that there were 3.5 million recorded deaths in 2021. People who are infected with SARS-CoV-2 without symptoms should have a pulse oximeter. Early detection of low oxygen levels in the blood can lead to fewer complications. Continuously decreasing oxygen saturation, if not controlled, will cause hypoxia (an abnormal respiratory circulation system condition that causes breathlessness). In normal conditions, oxygen levels and heart rate are related. When a person has a shortage of oxygen (breathlessness), their heart rate increases to supply the oxygen. Regulating heart rate can aid in the prevention of disorders such as arrhythmia, coronary heart disease, and hypertension. A pulse oximeter is used to measure the oxygen saturation in the blood and the patient's heart rate (BPM) with non-invasive methods. Conventional pulse oximeters do not support users by not having features such as medical records, which are required for further examination by a doctor. The purpose of this research is to make a pulse oximeter with external storage capability. The difference in wavelength between the red and infrared LED lights that will be captured by the photodiode is measured. SpO2 and HR values will be generated as a result of comparative measurements. Using a MAX30102 sensor to detect SpO2 and heart rate, and an Arduino Mega256 to process data for display on the TFT Nextion with Memory Card storage. By comparing the module to a conventional pulse oximeter, data was collected 10 times for each respondent. The maximum SpO2 error value is 0.43%, whereas the BPM parameter has the largest error value of 2.02% and the smallest error value of 0.01% based on the data collected. A significant error value is caused by finger movement. The module is usable, based on the results, because the maximum error tolerance for a pulse oximeter is 1% SpO2 and 5% BPM, according to the 2001 Ministry of Health Ministry's Guidelines for Testing and Calibrating Medical Devices.
Design and Build a Ventilator Tester with a Peak Inspiratory Flow Waveform Display as Validation using the F1031V Sensor
Rusdi Pratiwo Hadi;
Her Gumiwang Ariswati;
Dyah Titisari;
Syaifudin Syaifudin;
Sari Luthfiyah;
Bedjo Utomo;
Liliek Soetjiatie
Jurnal Teknokes Vol 15 No 4 (2022): December
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35882/teknokes.v15i4.472
The ventilator is a supporter of respiratory needs which is very important for the patient so that there are several parameters that must be monitored specifically, such as the measurement of pressure and flow rate used in the ventilator system, the accuracy of which must be in accordance with the accuracy of the respirator. One of the important parameters to monitor is PIF (Peak Inspiratory Flow) which is the peak inspiratory flow rate given through the ventilator. PIF that is too high or too low can cause adverse effects on the patient. PIF monitoring can be seen through the PIF value and waveform on the PIF. Monitoring the waveform of the PIF will be very useful to improve the results of using the ventilator. The purpose of this research is to get the accuracy and precision of the sensor to display the waveform of the ventilator output. The procedure carried out is to use the F1031V sensor to detect the flow generated by the ventilator and then detect the PIF value and PIF waveform. From this research, the measurement of accuracy and precision of the F1031V sensor to detect PIF and generate a waveform graph is said to be good. This is because the highest error value is ±2.04% at the 20 LPM setting. While the value of the largest standard deviation at the 30 LPM setting is 1.517 and the greatest uncertainty value at the 30 LPM setting is 0.061. Then, the largest correction value is found in the setting of 20 LPM and 30 LPM, namely 0.4. PIF monitoring is carried out to maximize patient care and reduce the breakdown time on the ventilator.