Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Transmisi

Effectiveness Comparative of The AG-666 Condenser with Re-Design In Producing Distillate for The AT-460 Distillation Tower Feed Kusuma, Daffa Meifan; Yuda, Dimas; Fahriani, Vera Pangni
TRANSMISI Vol. 21 No. 1 (2025): March (2025)
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jtmt.v21i1.14479

Abstract

PT. Sintas Kurama Perdana is the only formic acid production plant in Indonesia. The company places high attention on the daily operating conditions of its production process, ensuring that every parameter, such as flow rate, temperature, pressure, and components, is maintained according to the set point. In the production process of methyl formate and formic acid, optimization of operational conditions, especially in the heat exchanger unit, is the main focus. The shell and tube type heat exchanger, specifically with the code AG-666, is used to condense the AT-660 distillate vapor output. This study assesses whether the AG-666 is capable of total condensation without the need for the assistance of the AG-667 condenser in anticipation if the AG-667 does not function. The analysis is carried out based on the clean overall coefficient (Uc), design overall coefficient (Ud), fouling factor (Rd), efficiency, and effectiveness for actual design conditions and re-design. The data owned from the initial design of the survival is the Uc value of 1525 W/m2.K, Rd value of 0.00032 m2.K/W, efficiency of 82%, and effectiveness of 75%. The actual condition of the heat exchanger has a Uc value of 801.71 W/m2.K, Ud value of 104.62 Btu/ft.h.℉, Rd value of 0.000436 m2.K/W, efficiency of 74%, and effectiveness of 50%. Re-Design shows that increasing the number of passes (4 passes in the shell and 8 passes in the tube) allows single-stage condensation at an outlet temperature of 32 °C without non-condensable gases such as CO. Comparison between the initial design and the re-design results shows an increase in efficiency of 80% and effectiveness of 57.78%, with Uc 725.83 W/m2.K and Ud 102.27 Btu/ft.h.℉. The redesign provided better performance than the original design, although actual efficiency was slightly lower.
Analysis And Design Of Heat Exchanger at PT. X For Process Optimization Bagastama, Bima; Alwardah, Chairunnisa; Fahriani, Vera Pangni
TRANSMISI Vol. 21 No. 1 (2025): March (2025)
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jtmt.v21i1.15090

Abstract

Heat Exchanger is a device used to transfer heat between fluids to get the temperature operating conditions as needed. This research was conducted to obtain Heat Exchanger design calculations to solve problems and adjust the needs of PT X. The design of the Heat Exchanger is obtained by the Double Pipe Heat Exchanger type with a heat transfer area of 7.37 ft2. The hot fluid, Condensate Steam, will fill the inner pipe while the cold fluid in the form of refrigerant water will fill the annulus pipe. Superheated steam has a temperature higher than its boiling point at the same pressure. Steam condensate is steam that has cooled and condensed back into water after being used to do work or after losing heat.The length and number of hairpin heat exchangers are 10 ft and 1 hairpin. The height of the heat exchanger is 30cm. The designed heat exchanger uses turbulence flow type to optimize and streamline heat transfer. The performance and capability of the heat exchanger obtained Overall Dirty Coeficient Heat Transfer (Ud) 250 Btu/hr ft2 oF, Overall Clean Coeficient Heat Transfer (Uc) 558.027 Btu/hr ft2 oF, Fouling Factor (Rd) 0.002. The pressure drop values for both annulus and innerpipe are 0.99 psi and 2.321 psi, which do not exceed the safe limit. The friction values obtained on the innerpipe and annulus are 0.006 and 0.0105.