Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : BERKALA SAINSTEK

Classification of Cardiovascular Disease Gene Data Using Discriminant Analysis and Support Vector Machine (SVM) Prayogo, Rizky; Anggraeni, Dian; Hadi, Alfian Futuhul
BERKALA SAINSTEK Vol 10 No 3 (2022)
Publisher : Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/bst.v10i3.22259

Abstract

Cardiovascular disease is a disease caused by impaired function of the heart and blood vessels. This disease is caused by many factors, one of which is genetics, while the causes are age, gender, and family history. In this study, classification of 62 individuals with normal response and cardiovascular disease was carried out. Discriminant Analysis (AD) is a method that classifies data into two or more groups based on several variables where data that has been entered into one group will not be included in another group. The Support Vector Machine (SVM) performs classification by building an N-dimensional hyperplane that optimally separates data into two categories in the input space. Furthermore, AD and SVM will be compared to get which method has the best accuracy, after that it will be added to clustering using k-means and k-means kernels to improve the accuracy of each method. The results of this study are AD and SVM have accuracy values of 83.33% and 91.66%, for AD and SVM which are subjected to k-means have accuracy values of 91.66 % and 91.66 %, and for AD and SVM subjected to k-means kernel has an accuracy value of 100 % and 100 %.
Fungsi Likehood Pada Data Tersensor Interval Univariat Tresnawanti, Dini; Fatekurohman, Mohamad; Hadi, Alfian Futuhul
BERKALA SAINSTEK Vol 6 No 2 (2018)
Publisher : Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/bst.v6i2.9227

Abstract

Analisis survival adalah metode statistika yang digunakan dalam mempelajari ketahanan hidup yang berhubungan dengan waktu, mulai waktu awal yang sudah ditentukan dalam penelitian sampai waktu akhir penelitian, namun ada beberapa kendala untuk mengestimasi fungsi tersebut yakni adanya data tersensor. Untuk mengestimasi fungsi dengan masalah demikian digunakan metode nonparametrik maksimum likelihood estimator dengan data tersensor interval univariat yakni data pasien kanker payudara di Rumah Sakit Baladhika Husada (DKT) berupa data interval l i =( Li , Ri ) dengan i adalah banyaknya pasien kanker Payudara serta. Pada metode NPMLE sesuai dengan usulan Turnbull perlu dicari terlebih dahulu bagaimana bentuk fungsi likelihood. Dalam mencari fungsi likelihood dengan data univariat, dilakukan pendekatan representasi petrie untuk menghasilkan matriks Clique sebagai matriks indikator (αij ) . Hasil dari penelitian ini berupa fungsi non linear dengan derajat paling besar yaitu berderajat 5. Kata Kunci: survival, nonparametrik, likelihood, matriks Clique,Turnbull.