Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Science and Technology Indonesia

Analysis of Structure, Morphology, Magnetic Properties, and Microwave Absorption of Lanthanum Orthoferrite (LaFeO3) Naibaho, Marzuki; Widakdo, Januar; Kurniawan, Budhy; Nehan, Phahul Zhemas Zul; Vitayaya, Okvarahireka; Novita; Ramlan; Adi, Wisnu Ari; Ginting, Masno
Science and Technology Indonesia Vol. 9 No. 4 (2024): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.4.851-856

Abstract

LaFeO3 has been prepared using the solid-state reaction method with High Energy Milling (HEM). The preparation of LaFeO3 was carried out using stoichiometric calculations. Based on the XRD measurement results, single-phase LaFeO3 with an orthorhombic crystal structure was obtained. From the SEM results, the morphology of LaFeO3 is uniform, and the EDS results show the weight percentage of La, Fe, and O elements are 49.74, 21.08, and 29.18 wt%, respectively. VSM LaFeO3 results show magnetic saturation, remanence, and coercivity are 0.24 emu/g, 0.02 emu/g, and 853.38 Oe, respectively, and the absorption of LaFeO3 is -7.40 dB at a frequency of 6.02 GHz with a LaFeO3 sample thickness of 1.5mm.
Nickel Salt Dependency as Catalyst in the Plating Bath on the Film Properties of Cu/Cu-Ni Rosyidan, Cahaya; Kurniawan, Budhy; Soegijono, Bambang; Maulani, Mustamina; Samura, Lisa; Nababan, Frederik Gresia; Putra, Valentinus Galih Vidia; Susetyo, Ferry Budhi
Science and Technology Indonesia Vol. 9 No. 3 (2024): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.3.529-538

Abstract

Metal plating frequently employs nickel (Ni) and copper (Cu) as anodes. Cu/ Cu-Ni film formed has many advantages, such as better corrosion resistance and high hardness characteristics. This study aims to assess the properties of Cu/Cu-Ni film, such as phase, surface morphology, crystallographic orientation, hardness, corrosion analysis, and contact angle, which were fabricated using electrodeposition with various Ni salt additions (0.3, 0.5 and 0.7 M). In addition, the cathode current efficiency (CCE) and deposition rate of the Cu/Cu-Ni electrodeposition were also investigated. An increase in Ni salt in the plating bath could enhance the pH, promoting higher CCE and depleting hydrogen evolution at the cathode, leading to the presenting Ni phase in the alloy. The higher concentration of Ni salt in the solution could also enhance the deposition rate due to a shift to a pH value, which affects the roughening of the surface morphology, promoting a higher contact angle. All crystal structures generated by Cu/Cu-Ni electrodeposition were FCC, with the preferred orientation of the (111) plane. Crystallite size and lattice strain depend on the deposition rate. Less crystallite size and lattice strain affect the film’s hardness and corrosion resistance. Moreover, the third bath had the resulting Cu-Ni layer with the best hardness and corrosion rate of around 136 HV and 0.081 mmpy.