Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : World Chemical Engineering Journal

THE EFFECT OF NAOH CATALYST RATIO ON MANUFACTURING BIODISEL FROM OFFGRADE CPO Hartono, Rudi; Muklis, Muklis; Pamungkas, Wisnhu
World Chemical Engineering Journal VOLUME 4 NO. 2 DECEMBER 2020
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v4i2.10595

Abstract

Biodiesel is a type of alternative diesel fuel derived from plant oils or animal fats produced through the transesterification process. Previous biodiesel studies have stated that esterification reactions are carried out when the content of free fatty acids in vegetable oil raw materials is greater than 2%. If the content of free fatty acids is smaller than 2% then the process of transesterification reaction is carried out.                The research aims to find out the optimum operating conditions of biodiesel manufacturing with low grade CPO raw materials using the esterification and transesterification process. The research began with the analysis of low grade CPO raw materials, then carried out the esterification process with the H2SO4 catalyst and continued the transesterification process with NaOH catalyst. Fixed variables in the study were oil volume, 1% of H2SO4 catalyst, mole ratio of oil and methanol 1:6, reaction time and reaction temperature of 60 oC. The fixed variables in the study were NaOH catalyst ratios in the transesterification process of 0.5%, 1% and 1.5%. The oil obtained is analyzed the content of free fatty acids, density, viscosity, and water content.                The results of the study obtained the physical and chemical properties of low grade CPO, namely water content 0.042% and free fatty acids 49.03. Optimum operating conditions are obtained with a catalyst ratio of NaOH of 1% with a methyl ester yield of 60.80%. The resulting methyl ester has a viscosity value of 5,381 cSt, a density of 870 kg/m3, an acidic content of 0.11 and a water content of 0.028.
Evaluating Emulsion Dynamics: The Role of Surfactants and Mixing Conditions in Non-Baffled Configurations Kanani, Nufus; Kustiningsih, Indar; Wardhono, Endarto Yudo; Wardalia, Wardalia; Heriyanto, Heri; Adiwibowo, Muhammad Triyogo; Rusdi, Rusdi; Hartono, Rudi; Demustila, Harly; Damayanti, Demietrya Renata Sashi; Maulida, Alyssa Shafira; Priyatna, Aufa Irsyad
World Chemical Engineering Journal VOLUME 8 NO. 2 DECEMBER 2024
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v8i2.30085

Abstract

The study investigates the impact of surfactant concentration and mixing time on the physical properties and stability of emulsions in non-baffle mixing systems. Surfactants, known for their ability to reduce interfacial tension, play a pivotal role in enhancing emulsion stability by promoting uniform droplet dispersion and reducing coalescence. Experiments were conducted using varying surfactant concentrations (0, 5, and 10 mL) to evaluate their effects on key parameters such as density, viscosity, Reynolds number, emulsion height, and stability over time. The results revealed that higher surfactant concentrations significantly improved emulsion uniformity and stability, with the 10 mL concentration yielding the most consistent outcomes. However, the absence of baffles introduced challenges, including prolonged mixing times and stratification tendencies, underscoring the need for optimized mixing configurations. These findings have practical implications for industries reliant on stable emulsions, highlighting the importance of balancing surfactant concentration and mixing dynamics to achieve efficient and cost-effective processes.