Claim Missing Document
Check
Articles

Found 18 Documents
Search

COMBINING SUPERVISED AND UNSUPERVISED METHODS IN TOURISM VISITOR DATA Weksi Budiaji; Vebriana Vebriana; Juwarin Pancawati
Journal of Information Technology and Its Utilization Vol 5 No 1 (2022)
Publisher : Sekolah Tinggi Multi Media "MMTC" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56873/jitu.5.1.4659

Abstract

Combining supervised and unsupervised method can assist in the data analysis process. This research aims to apply a supervised method, i.e. Poisson regression, that is followed by an unsupervised method, namely cluster analysis of the visitors in a tourism dataset. The samples were taken 80 persons purposively from the visitors of the Flower Garden X in Serang Regency, Banten Province. The dataset consists of the number of visits, travel cost, income/ stipend per month, gender, age, distance from the place of origin, and perception, which is formed by 11 questions of facilities and services. The Poisson regression was applied in the 30, 40, and 50 bootstrap samples resulted in the perception as the significant features. Then, medoid-based cluster analysis, i.e. pam and simple k-medoids, in the perception dataset was applied. They compared simple matching and cooccurrence distances and were validated via medoid-based shadow value. It grouped the visitors into five clusters as the most suitable number of clusters. The combined methods of supervised and unsupervised provided the cleanliness as the important indicator. The improvement of the tourism object had to be focus on the cleanliness aspect.
TINGKAT KAPASITAS PETANI PRODUSEN BENIH PADI DALAM MENYEDIAKAN BENIH BERSERTIFIKAT DI KABUPATEN SERANG Amaliah, inti; Saleh , Khaerul; Budiaji, Weksi
Jurnal Penyuluhan dan Pemberdayaan Masyarakat Vol. 2 No. 3 (2023): Jurnal Penyuluhan dan Pemberdayaan Masyarakat
Publisher : CV. Era Digital Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59066/jppm.v2i3.423

Abstract

Ketersediaan benih padi bersertifikat di tingkat lapangan masih terbatas. Permasalahan tersebut dapat disebabkan oleh kapasitas petani produsen benih padi belum memadai sehingga tidak dapat memenuhi kebutuhan benih padi varietas unggul bersertifikat dalam jumlah besar. Tujuan penelitian untuk menganalisa dan menguji pengaruh karakteristik internal dan dukungan eksternal terhadap tingkat kapasitas petani produsen benih padi serta tingkat kapasitas terhadap kemampuan petani menyediakan benih padi bersertifikat. Metode penelitian survei yang bersifat deskriptif dengan pendekatan kuantitatif menggunakan kuesioner terstruktur. Jumlah sampel ditentukan dengan metode stratified proporsional sampling sebanyak 80 orang petani produsen benih padi dari 16 Kelompok Tani dan 3 Gabungan Kelompok Tani di Kabupaten Serang. Analisis data menggunakan Structural Equation Modeling (SEM). Hasil penelitian menunjukkan bahwa tingkat kapasitas petani produsen benih padi berada pada kelompok sedang mencakup aspek identifikasi peluang, perencanaan, perilaku (pengetahuan, keterampilan, sikap), pemecahan masalah, dan adaptasi. Faktor yang memengaruhi tingkat kapasitas petani produsen benih padi adalah karakteristik internal sebesar 0,65 (91,5 persen) dari unsur umur, pendidikan formal, pengalaman, dan akses informasi serta dukungan eksternal sebesar 0,31 (43,7 persen) melalui pembinaan oleh PBT dan dukungan pemerintah. Faktor-faktor yang memengaruhi kapasitas petani produsen benih padi secara struktural dapat dirumuskan sebagai berikut: ɳ1=0,65ξ1+0,31ξ2+0,29e dengan R2=0,71. Arti dari rumus tersebut adalah kapasitas petani produsen benih padi ditentukan oleh tingginya dukungan eksternal dan karakteristik internal sebesar 71 persen. Sisanya sebesar 29 persen dipengaruhi oleh faktor lain yang tidak terdapat dalam model. Kemampuan petani produsen benih padi menyediakan benih bersertifikat dipengaruhi oleh tingkat kapasitas petani sebesar 0,99 (99 persen). Kemampuan petani dalam menyediakan benih padi bersertifikat secara struktural dirumuskan ɳ2=0,99ɳ1-1,07e dengan R2=1,00. Rumus tersebut mengandung arti kemampuan petani dalam menyediakan benih padi bersertifikat ditentukan oleh tingkat kapasitas petani itu sendiri dan berpengaruh negatif terhadap aspek produksi dan menghasilkan kelas benih padi.
Hierarchical clustering algorithm-dendogram using Euclidean and Manhattan distance Mukhtar, Mukhtar; Majahar Ali, Majid Khan; Arina, Faula; Wicaksono, Agung Satrio; Ikhsan, Aulia; Budiaji, Weksi; Abdullah, Syarif; Pertiwi, Dinda Dwi Anugrah; Zidny, Robby; Oktarisa, Yuvita; Sukarna, Royan Habibie
Jurnal Teknika Vol 20, No 1 (2024): Available Online in June 2024
Publisher : Faculty of Engineering, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/tjst.v20i1.23187

Abstract

This paper presents the outcomes of a research experiment on the drying process of seaweed. There are numerous approaches to clustering data, such as partitioning and the Hierarchical Clustering Algorithm (HCA). The HCA has been implemented in binary tree structures to visualize data clustering. We conducted a comparative analysis of the four primary methodologies utilized in HCA, namely: 1) single linkage, 2) complete linkage, 3) average linkage, and 4) Ward's linkage. Clustering validation is widely recognized as a crucial issue that significantly impacts the effectiveness of clustering algorithms. Clustering validation can be identified, such as internal and external validation. Internal clustering validation, in particular, holds significant importance in the realm of data science. With this article, the main goal is to do an empirical evaluation of the traits that a representative set of internal clustering validation indices, namely Connectivity, Dunn, and Silhouette, show. In this paper, the HCA applies two distance functions between Euclidean and Manhattan distances to analyze the entanglement function and internal validity.
Applied Machine Learning DBSCAN for Identifying Clusters of Micro and Small Industries Wijaya, Ferdian Bangkit; Budiaji, Weksi; Wicaksono, Agung Satrio
RIGGS: Journal of Artificial Intelligence and Digital Business Vol. 4 No. 2 (2025): Mei - Juli
Publisher : Prodi Bisnis Digital Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/riggs.v4i2.515

Abstract

This study aims to identify clustering patterns of sub-districts in Serang District based on village participation in Micro and Small Industry (MSI) activities using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, a machine learning method in Unsupervised Learning. Secondary data from the Statistics Indonesia (BPS) on Potentials of Villages in Serang District for 2024 was used, covering 29 sub-districts and 15 MSI sector variables. Data preprocessing involved Min-Max Scaler normalization and Principal Component Analysis (PCA) to address sparsity and multicollinearity. DBSCAN parameter optimization was done through simulations of epsilon values (0–1) and MinPts (1–10), validated with the Silhouette Score and Davies-Bouldin Index. The optimal configuration of epsilon=0.3 and MinPts=1 resulted in seven clusters with no noise, and a Davies-Bouldin Index of 0.620, indicating good separation. Spatial analysis revealed meaningful cluster distribution, with comprehensive industry clusters in the central region and specialized clusters in peripheral areas. These findings provide a basis for formulating MSI development policies in Serang District, highlighting the importance of data preprocessing techniques in sparse data analysis for evidence-based decision-making.
Analisis Efisiensi Produksi Usahatani Cabai Merah Keriting (Studi Kasus Di Kecamatan Baros, Kabupaten Serang) Pratiwi, Widya; Pancawati, Juwarin; Budiaji, Weksi; Mulyati, Sri; Sulaeni, Sulaeni
JURNAL AGRIBISNIS TERPADU Vol 18, No 1 (2025): Jurnal Agribisnis Terpadu
Publisher : Jurusan Agribisnis Fakultas Pertanian Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33512/jat.v18i1.31260

Abstract

Produktivitas cabai merah keriting di Kecamatan Baros masih berfluktuasi dan cenderung belum maksimal yang diduga disebabkan oleh penggunaan faktor produksi yang yang belum optimal sehingga mempengaruhi tingkat efisiensi produksi. Tujuan dari penelitian ini adalah untuk menganalisis faktor-faktor produksi dalam usahatani cabai merah keriting dengan mengidentifikasi faktor yang mempengaruhi produksi cabai merah keriting serta menganalisis efisiensi penggunaan faktor-faktor produksi dari aspek teknis, harga dan ekonomi. Penelitian ini dilakukan di Kecamatan Baros pada bulan bulan Januari sampai dengan Februari 2024. Metode penelitian yang digunakan yaitu kuantitatif deskriptif dan penentuan daerah ditetapkan secara secara purposive dengan pertimbangan petani di Kecamatan Baros yang menanam cabai merah keriting pada musim tanam Agustus hingga Desember 2023. Jumlah populasi petani yang memenuhi kriteria tersebut yaitu 35 orang sehingga menggunakan teknik pengambilan sampel jenuh. Analisis data menggunakan fungsi produksi Coubb Douglass, fungsi produksi Stochastic Frontier dan analisis efisiensi. Hasil dari penelitian ini secara simultan menunjukkan bahwa faktor produksi lahan, benih, pupuk kandang, Pupuk NPK Mutiara, Pestisida Demolish, dan tenaga kerja berpengaruh secara bersama-sama terhadap produksi. Secara parsial, faktor produksi yang berpengaruh signifikan hanya luas lahan dan pupuk NPK Mutiara, sedangkan faktor produksi benih, pupuk kandang, pestisida Demolish pestisida dan tenaga kerja tidak berpengaruh signifikan terhadap produksi. Hasil analisis efisiensi menunjukkan bahwa usahatani cabai merah keriting di Kecamatan Baros belum efisien secara teknis serta tidak efisien secara harga dan ekonomi.
Web Scraping Analysis of Job Platform Adoption in Banten's Manufacturing Sector Wijaya, Ferdian Bangkit; Budiaji, Weksi
RIGGS: Journal of Artificial Intelligence and Digital Business Vol. 4 No. 3 (2025): Agustus - October
Publisher : Prodi Bisnis Digital Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/riggs.v4i3.2282

Abstract

This study addresses the critical disconnect between Indonesia's manufacturing sector and the digitally native Gen Z workforce, focusing on Banten Province, a region with high youth unemployment despite its industrial concentration. We quantitatively assess the digital presence of manufacturing companies on key recruitment platforms, including LinkedIn, Jobstreet, and the government's Karirhub portal, to quantify this gap. Using web scraping techniques with Python, company profile data was systematically collected and analyzed. The findings reveal a limited digital footprint, with overall company presence recorded at 43.24% on LinkedIn, 42.70% on Karirhub, and a notably lower 32.97% on Jobstreet. Significant disparities exist across subsectors; consumer-facing industries like Food, Beverage, and Automotive show high digital engagement, while sectors such as Textiles, Electronics, and Non-metallic Minerals lag considerably. Notably, the Tobacco industry was found exclusively on the government's Karirhub platform. This confirmed digital divide hinders effective talent acquisition and limits job seekers' access to credible information. We conclude that a strategic imperative exists for manufacturers to enhance their digital recruitment strategies. This is crucial not only for attracting Gen Z talent but also for aligning with Indonesia’s national digitalization agenda to reduce unemployment.
Kontributor dan Faktor Utama Kerawanan Pangan pada Daerah 3T: Studi Kasus di Kabupaten Seram Bagian Timur M Indra Rumasukun; Kamaruddin Kamaruddin; Weksi Budiaji; Suman Sangadji; Miranda H Hadijah; Juni La Djumat
JUSTE (Journal of Science and Technology) Vol. 5 No. 1 (2024): JUSTE (Journal of Science and Technology)
Publisher : LLDIKTI WIlayah XII Ambon

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51135/

Abstract

Penelitian ini bertujuan untuk mengidentifikasi faktor utama yang menyebabkan kerawanan pangan di wilayah tertinggal, terdepan, dan terluar (3T), dengan studi kasus di Kabupaten Seram Bagian Timur, Provinsi Maluku. Dengan pendekatan deskriptif kuantitatif dan menggunakan data primer serta sekunder dari tahun 2023, penelitian ini menganalisis aspek ketersediaan, distribusi, konsumsi pangan, serta ketahanan pangan rumah tangga. Hasil analisis menunjukkan bahwa meskipun terdapat potensi besar dalam produksi pangan lokal seperti sagu, ikan laut, dan protein hewani, kerawanan pangan masih tinggi akibat distribusi yang terbatas, infrastruktur lemah, serta rendahnya diversifikasi konsumsi pangan. Skor Pola Pangan Harapan (PPH) dan tingkat konsumsi energi per kapita juga berada di bawah standar ketahanan pangan nasional. Rekomendasi diarahkan pada peningkatan konektivitas antarwilayah, optimalisasi komoditas lokal, serta edukasi konsumsi gizi seimbang.
COMBINING SUPERVISED AND UNSUPERVISED METHODS IN TOURISM VISITOR DATA Weksi Budiaji; Vebriana Vebriana; Juwarin Pancawati
Journal of Information Technology and Its Utilization Vol 5 No 1 (2022)
Publisher : Sekolah Tinggi Multi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56873/jitu.5.1.4659

Abstract

Combining supervised and unsupervised method can assist in the data analysis process. This research aims to apply a supervised method, i.e. Poisson regression, that is followed by an unsupervised method, namely cluster analysis of the visitors in a tourism dataset. The samples were taken 80 persons purposively from the visitors of the Flower Garden X in Serang Regency, Banten Province. The dataset consists of the number of visits, travel cost, income/ stipend per month, gender, age, distance from the place of origin, and perception, which is formed by 11 questions of facilities and services. The Poisson regression was applied in the 30, 40, and 50 bootstrap samples resulted in the perception as the significant features. Then, medoid-based cluster analysis, i.e. pam and simple k-medoids, in the perception dataset was applied. They compared simple matching and cooccurrence distances and were validated via medoid-based shadow value. It grouped the visitors into five clusters as the most suitable number of clusters. The combined methods of supervised and unsupervised provided the cleanliness as the important indicator. The improvement of the tourism object had to be focus on the cleanliness aspect.