Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jiko (Jurnal Informatika dan komputer)

IMPLEMENTATION OF INFORMATION GAIN AND PARTICLE SWARM OPTIMIZATION UPON COVID-19 HANDLING SENTIMENT ANALYSIS BY USING K-NEAREST NEIGHBOR Riana Riana; Muhammad I Mazdadi; Irwan Budiman; Muliadi Muliadi; Rudy Herteno
JIKO (Jurnal Informatika dan Komputer) Vol 6, No 1 (2023)
Publisher : JIKO (Jurnal Informatika dan Komputer)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v6i1.5260

Abstract

In early 2020, a new virus from Wuhan, China, identified as the coronavirus or COVID-19, shocked the entire world. (Coronavirus Disease 2019). The government has made various attempts to combat this outbreak, despite the fact that the government's involvement in combating Covid-19 has many benefits and disadvantages. One of the most commonly debated subjects on Twitter is the Indonesian government's response to the Covid-19 virus. This research compares the k-nearest neighbor classification technique, Information Gain feature selection with the K-Nearest Neighbor classification algorithm, and Information Gain feature selection and Particle Swarm Optimization optimization with the K-Nearest Neighbor classification algorithm. Comparisons are performed to determine which method is more accurate. Because it is frequently used for text and data categorization, the K-Nearest Neighbor algorithm was selected. The K-Nearest Neighbor algorithm has flaws, including the ability to be fooled by irrelevant characteristics and being less than ideal in finding the value of k. The selection of the Information Gain feature could indeed solve this issue by decreasing Terms that are less important and to optimize the K-Nearest Neighbor categorization, an optimization method with the Particle Swarm Optimization algorithm is employed to maximize the K-Nearest Neighbor classification. According to the results of this research, the K-Nearest Neighbor categorization with Information Gain feature selection and Particle Swarm Optimization optimization is better than the K-Nearest Neighbor model without selecting features and without optimization and is better than the K-Nearest Neighbor model with Information Gain selecting features, notably 87,33% with a value of K 5.
Co-Authors A.A. Ketut Agung Cahyawan W Abdul Gafur Achmad Zainudin Nur Ahmad Faris Asy'arie Ahmad Faris Asy’arie Ahmad Rusadi Arrahimi Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Shofi Khairian Aji Triwerdaya Ajwa Helisa Akhmad Yusuf Andi Farmadi Andi Farmadi Andi Farmadi Andi Farmandi Antar Sofyan Aris Pratama Artesya Nanda Akhlakulkarimah Dendy Fadhel Adhipratama Dendy Dita Amara Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini Dwi Kartini, Dwi Faisal Murtadho Fatma Indriani Fatma Indriani Fitrinadi Friska Abadi Halimah Halimah Halimah Ichwan Dwi Nugraha Kevin Yudhaprawira Halim Lutfi Salisa Setiawati M Kevin Warendra Mera Kartika Delimayanti Muflih Ihza Rifatama Muhammad Adhitya Pratama Muhammad Darmadi Muhammad Haekal Muhammad Halim Muhammad Haris Qamaruzzaman Muhammad I Mazdadi Muhammad Iqbal Muhammad Irfan Saputra Muhammad Itqan Masdadi Muhammad Itqan Mazdadi Muhammad Latief Saputra Muhammad Mada Muhammad Nazar Gunawan Muhammad Reza Faisal, Muhammad Reza Muhammad Ridha Maulidi Muhammad Rizky Adriansyah Muhammad Rusli Muliadi Muliadi Muliadi - Muliadi Aziz Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi muliadi muliadi Mutiara Ayu Banjarsari Nahdhatuzzahra Nahdhatuzzahra Nor Indrani Nursyifa Azizah Oni Soesanto Patrick Ringkuangan Radityo Adi Nugroho Rahman Hadi Rahman Rahmat Hidayat Rahmat Ramadhani Retma Ramadina Riana Riana Riza Susanto Banner Rizki Amelia Rudy Herteno Rudy Herteno Salsabila Anjani Sam'ani Sam'ani Saragih, Triando Hamonangan Septiadi Marwan Annahar Septyan Eka Prastya Setyo Wahyu Saputro Sofyan, Antar Sulastri Norindah Sari Sutami Sutan Takdir Alam Toni Prahasto Tri Mulyani Wahyu Caesarendra Wahyudi Wahyudi Yuli Christyono