Claim Missing Document
Check
Articles

Found 16 Documents
Search

DESAIN PENGEMBANGAN AUTOPILOT PESAWAT UDARA TANPA AWAK MENGGUNAKAN AVR-XMEGA SEBAGAI PERANGKAT OBDH Wibowo, Setyawan Bekti; Sumiharto, R.; Hujja, Roghib Muhammad
Jurnal Teknologi Vol 8 No 1 (2015): Jurnal Teknologi
Publisher : Jurnal Teknologi, Fakultas Teknologi Industri, Institut Sains & Teknologi AKPRIND Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Beberapa misi penerbangan membutuhkan perangkat efisien dengan meminimalisir resiko personil penerbang. Pesawat udara tanpa awak (UAV) memiliki kemampuan yang cukup efektif dalam mengatasi kesulitan tersebut dengan resiko dan biaya yang lebih kecil. Banyaknya kegunaan UAV untuk berbagai kegiatan baik sipil maupun militer seperti untuk misi pengawasan perbatasan, maupun pemotretan udara sehingga diperlukan kemampuan dari UAV untuk bisa terbang mandiri dengan stabilitas yang tinggi. Performa handal dari UAV tersebut ditentukan oleh kontroller yang akan mengendalikan UAV tersebut dengan akurasi yang tinggi dan kemudahan dalam mengendalikannya. Sistem autopilot memerlukan kontroller dengan kemampuan untuk mengelola sensor-sensor payload dan mengolahnya untuk diteruskan sebagai keluaran pada servo aeleron, rudder dan elevator pesawat. Penggunaan mikrokontroller AVR-XMEGA merupakan salah satu pilihan yang baik dalam penggunaannya sebagai perangkat kendali utama atau Onboard Data Handling (OBDH). Sistem autopilot yang dibuat memiliki dua mode yaitu mode manual yang menggunakan input PWM dari RC Receiver untuk langsung diteruskan ke servo dan mode auto menggunakan hasil pembacaan sensor IMU dan memproses PID untuk menjaga kestabilan posisi pesawat. Hasil pengujian kedua mode dengan pengetesan interval tick dari input ke output menghasilkan data proses input dan output terjadi pada tick yang sama sehingga sistem ini berjalan secara real time.
Purwarupa Air Data, Attitude, dan Heading Reference System untuk Unmanned Aerial Vehicle Adrianus Prima Manggala; Raden Sumiharto; Setyawan Bekti Wibowo
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 2, No 1 (2012): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.343 KB) | DOI: 10.22146/ijeis.2337

Abstract

AbstrakADAHRS  (air data, attitude, and heading reference system )merupakan gabungan dari sensor air data (AD) dan sistem referensi attitude and heading (AHRS). Sistem ini memiliki peran penting dalam memberikan data parameter-parameter penerbangan yang akan digunakan oleh modul lain dalam UAV. Parameter penerbangan yssang dibaca oleh ADAHRS adalah sudut yaw, sudut pitch, sudut roll, serta data ketinggian, kecepatan, suhu, tekanan, dan koordinat GPS yang akan digunakan sebagai referensi dalam mengontrol UAV.Sistem ADAHRS yang diteliti berbasis pada Arduino Mega 2560. Sistem mendapatkan data dari sensor Razor 9DOF IMU, sensor ketinggian berbasis BMP085, sensor kecepatan udara berbasis MPXV5004DP + pitot sederhana, dan penerima GPS PMB648. Data dari sensor-sensor tersebut akan diolah untuk kemudian dikirimkan ke modul lain dalam UAV melalui komunikasi serial.Hasil dari penelitian ini adalah sebuah sistem pembacaan parameter data penerbangan yang dapat mengirimkan data dengan output rate 18 Hz dan waktu inisialisasi <1 s. Sensor IMU memiliki ralat rata-rata 0,80° untuk pitch, roll sebesar 0,70°, dan yaw 0,78°. Sensor ketinggian memiliki nilai ralat rata-rata 12,42 m, sensor kecepatan dan pitot sederhana memiliki nilai ralat 8,05 km/jam. Sedangkan GPS receiver memiliki akurasi 7,5 m untuk ketinggian dan 6,19 m untuk posisi, tetapi dengan update rate hanya 1 Hz. Kata kunci— UAV, ADAHRS, sensor, Air Data, AHRS. AbstractADAHRS(air data, attitude, and heading reference system ) is formed from a fusion of air data sensor (AD) along together with attitude and heading reference system (AHRS). This system has important role in feeding flight parameters data to be used by other UAV’s module. Flight parameter that being read consist of yaw angle, pitch angle, roll angle, altitude, air speed, temperature, air pressure, and GPS coordinate that will be referenced for controlling the UAV.The ADAHRS system under research is based on Arduino Mega 2560. The system acquired attitude data from Razor 9 DOF IMU, altitude sensor based on BMP085, air speed sensor based on MPXV5004DP + simple pitot tube, and geographical data from PMB648 GPS receiver. Data from sensors will be processed and transmitted to other UAV’s module via serial communication. The result of this research is flight parameter reading system that have 18 Hz data output rate and <1 second initialization time. IMU sensor has a mean error value  0,80° for pitch, 0,70° for roll,  and 0,78° for yaw. Altitude sensor based on BMP085 has a mean error value at 12,42 m, air speed sensor and simple pitot tube has a mean error value at 8,05 km/h. GPS receiver has accuracy 7,5 m for altitude and 6,19 m for position, but only with 1 Hz update rate.   Keywords— UAV, ADAHRS, sensor, Air Data, AHRS.
Purwarupa Ground Control Station untuk Pengamatan dan Pengendalian Unmanned Aerial Vehicle Bersayap Tetap Ali Akbar Farghani; Raden Sumiharto; Setyawan Bekti Wibowo
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 3, No 1 (2013): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (726.243 KB) | DOI: 10.22146/ijeis.3834

Abstract

AbstrakDalam penelitian pengendalian UAV tipe sayap tetap salah satu permasalahan yang muncul adalah bagaimana melakukan pemantauan dan pengendalian jarak jauh ketika UAV sudah berada diluar jangkauan penglihatan operator atau pilot.Berdasarkan masalah tersebut dibuat purwarupa Ground Control Station untuk pengamatan dan pengendalian Unmanned Aerial Vehicle dengan konfigurasi sayap tetap. Sistem ini merupakan salah satu modul pendukung dalam operasional UAV dan berperan sebagai alat bantu untuk mengetahui kondisi dan posisi terkini dari UAV selama operasional khususnya ketika sudah berada diluar jangkauan visual operatornya.Antarmuka pada Ground Control Station ini dibuat menggunakan Microsoft Visual Studio 2010 dengan bahasa C#, yang dijalankan pada laptop dan terhubung dengan UAV secara nirkabel menggunakan XBee Pro RF Transceiver 2,4 GHz.Ground Control Station ini dapat menampilkan visualisasi parameter penerbangan UAV melalui panel instrumen yang menampilkan data kecepatan udara (airspeed), heading (yaw), sudut guling dan angguk (pitch and roll), ketinggian barometrik, turn and bank rate, serta climb speed sesuai data yang didapat dari modul ADAHRS. Plot lokasi dan jalur penerbangan UAV ditampilkan pada peta  sesuai data lokasi yang didapat dari GPS ADAHRS. Selain itu kuat sinyal, daya baterai, dan memberikan peringatan melalui alarm pada antarmuka Ground Control Station jika berada pada kondisi tertentu, sesuai data yang didapat dari modul ADAHRS. Kata kunci—Ground Control Station, Visual Studio 2010, C# , XBee, UAV sayap tetap, Instrumen penerbangan, peta penerbangan. Abstract One problem that arises in the study of fixed-wing UAV is how to monitor and control remotely when the UAVs have been beyond the reach of the operator vision. Based on that  problems,  the prototype of Ground Control Station for the observation and control of Unmanned Aerial Vehicle with fixed wing configuration is created. This system is one of the modules supporting the UAV operations and serves as a tool to determine the condition and the current position of the UAV during the operation.The interface on the Ground Control Station is built using Microsoft Visual Studio 2010 with C # language, which can be running on a laptop and connect to the UAV wirelessly using XBee Pro 2.4 GHz  RF Transceiver.Ground Control Station can display visualization UAV flight parameters via the instrument and displays airspeed, yaw, pitch and roll angle, barometric altitude, rate of turn and bank, and climb speed depend on data obtained from ADAHRS module. Plot location and UAV flight path shown on the map according to the data obtained from the GPS location. Signal strenght, battery power, and the warning alarm displays on the interface of  Ground Control Station if the UAV is in certain circumstances, according to data obtained from the module ADAHRS. Keywords—Ground Control Station, Visual Studio 2010, C# , XBee, Fixed wing UAV, Flight Instrument, Flight path and location.
Purwarupa Kontrol Kestabilan Posisi dan Sikap pada Pesawat Tanpa Awak Menggunakan IMU dan Algoritma Fusion Sensor Kalman Filter Praja Sapta Ardiantara; Raden Sumiharto; Setyawan Bekti Wibowo
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 4, No 1 (2014): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (638.371 KB) | DOI: 10.22146/ijeis.4219

Abstract

Flight Control System merupakan salah satu bagian yang penting dalam sebuah UAV yang dapat digunakan untuk menentukan posisi keadaan pesawat agar tetap stabil dan sesuai dengan misi terbang yang dilakukan. Untuk melakukan kontrol kestabilan dari UAV diperlukan salah satu sensor yaitu sensor IMU(Inertial Measurement Unit) dimana dalam pengembangannya terdapat beberapa algoritma yang digunakan dalam pengolahan data yang dikeluarkan dari sensor IMU tersebut. Salah satunya dalam penelitian ini adalah algoritma fusion sensor Kalman filter, yang digunakan untuk menggabungkan data keluaran dari sensor accelerometer dan gyroscope dalam IMU yang mempunyai noise agar didapatkan data keluaran yang rendah noise sehingga dapat digunakan secara maksimal dalam kontrol kestabilan UAV.Pada penelitian ini sensor yang digunakan adalah IMU GY86 yang mengirimkan data bacaan accelerometer, gyroscope dan magnetometer dengan komunikasi I2C. Digunakan Arduino Uno sebagai sistem operasi dengan beberapa task yaitu bacasensor, mengolah data keluaran sensor menggunakan algoritma fusion sensor Kalman Filter, kontrol_manual dan kontrol_stabilisasi. Sistem memiliki dua kontrol yaitu kontrol manual yang menggunakan input PWM(Pulse Width Modulation) dari RC Receiver untuk langsung diteruskan ke servo melalui pin dari Arduino. Kontrol kestabilan menggunakan hasil pembacaan sensor IMU yang kemudian dilakukan penggabungan data sensor dengan mengimplementasikan algoritma fusion sensor Kalman Filter untuk didapatkan nilai output sensor yang bersih dari noise dan memproses keluaran fusion sensor tersebut untuk mengontrol kestabilan posisi pesawat pada tiga sumbu poros terbang yaitu kondisi terbang dengan poros sumbu x, y, dan z.            Hasil dari penelitian ini berupa purwarupa sistem kontrol kestabilan UAV dengan kontrol manual dan kontrol kestabilan. Uji coba sistem dilakukan dengan percobaan statis dan dinamis dari setiap sudut yang dihasilkan sensor sebelum dan sesudah digunakan algoritma fusion sensor Kalman filter. Dari hasil pengujian didapatkan kesimpulan bahwa penggunaan algoritma fusion sensor Kalman filter dapat memberikan pengukuran sudut yang akurat dan dinamis dengan nilai error sebesar 0,5% untuk sudut terhadap sumbu X, dan 0,6% untuk sudut terhadap sumbu Y. Kata kunci—Stabilisasi, IMU, PWM ,  RC Receiver, Kalman Filter, Fusion Sensor. Flight Control System is one important part of a UAV that can be used to determine the position of state aircraft to remain stable and fit to fly missions conducted. To control the stability of the UAV required one of sensor that is the IMU(Inertial Measurement Unit) sensor, where in its development there are several algorithms used in processing the data output from the IMU sensor. One of them in this study is the sensor fusion algorithm Kalman filter, which is used to combine the data output from the accelerometer and gyroscope sensors in the IMU has a noise in order to obtain a low noise output data that can be used optimally in the stability control UAVs.In this study IMU GY86 sensor is used to transmit data reading from accelerometer, gyroscope and magnetometer with I2C comunications. Arduino Uno is used as the operating system with a task that is bacasensor, process the sensor output data using sensor fusion algorithm Kalman Filter, kontrol_manual and kontrol_stabilisasi. The system has two controls that use the manual control input PWM (Pulse Width Modulation) from RC Receiver for forwarded directly to the servo via pin of the Arduino. Stability control using IMU sensor readings are then performed with the sensor data fusion algorithm implements sensor fusion Kalman Filter to obtain the value of the net output of the sensor noise and process the sensor fusion output to control the stability of the aircraft's position in three-axis fly the shaft with shaft flying conditions axes x, y, and z.The results of this study is UAV stability control system prototype with manual control and stability control. System testing is done with static and dynamic experiments from every angle from the sensor before and after use Kalman filter sensor fusion algorithms. From the test results it was concluded that the use of the Kalman filter sensor fusion algorithm can provide accurate angular measurements and dynamic with an error value of 0.5% for an angle to the X axis, and 0.6% for an angle to the axis Y. Keywords—Stabilisasi, IMU, PWM ,  RC Receiver, Kalman Filter, Fusion Sensor.
Identifikasi Model dari Pesawat Udara Tanpa Awak Sayap Tetap Jenis Bixler Abdul Majid; Raden Sumiharto; Setyawan Bekti Wibisono
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 5, No 1 (2015): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (899.086 KB) | DOI: 10.22146/ijeis.7152

Abstract

Flight model is one of importing thing in fixed-wing unmanned aerial vehicle (UAV) control system development, mainly in the aircraft autopilot. Through this flight model, the aircraft motion can be represented and simulated.In this research, the flight model is obtained through system identification and system modelling of Bixler fixed-wing  unmanned aerial vehicle. System identification is based on experiment data and use state-space model structure. There are three stages in this research, aircraft motion system modelling, flight data collecting, and flight model identification. Through those three stages, Bixler fixed-wing unmanned aerial vehicle flight model is obtained as represented in two modes, longitudinal mode and lateral modeThe Bixler fixed-wing unmanned aerial vehicle longitudinal mode flight model is obtained using 13 parameters. The lateral mode is obtained using 11 parameters. All modes are in 4th order state space model structure.
Purwarupa Sistem Kendali Kestabilan Pesawat Tanpa Awak Sayap Tetap Menggunakan Robust PID Dwitiya Bagus Widyantara; Raden Sumiharto; Setyawan Bekti Wibowo
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 6, No 2 (2016): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (711.432 KB) | DOI: 10.22146/ijeis.15260

Abstract

 This study has implemented stability control system of Unmanned Aerial Vehicle (UAV) using  robust PID. The aircraft stability refers to wind against in glidding condition with straight movement. Robust PID used to control aircraft motion system. Control parameters obtained from the IMU sensor roll, pitch and yaw. IMU data are computed using DCM algorithm that produces Eulerian angles. Type PID control is determined by Ziegler-Nichols methods theory of oscillations. Control system are varied three types, there are P, PI, and PID. The results have the best type of PID control with D constant value = 0 for each motion systems. PID constant value used for the aileron Kp = 2,93, Ki = 2,808  and Kd = 0, elevators Kp = 2,02, Ki = 1,731 and Kd = 0 and rudder Kp = 1,35, Ki = 0,9 and Kd = 0. Robust method using ISE (Integral Squared Error) which replaces integral PID control error. The system was tested using two mode. Mode A (Manual-PID-RobustPID) and mode B (Manual-RobustPID-PID). The result of robust PID methods is able to make the system response to disturbances better than regular PID that increase the settling time of aileron 63.67% , elevator 41.42% and rudder 57.33%.
Analisis Unjuk Kerja Mesin Sepeda Motor 4 Tak Dengan Penambahan Turbulator pada Intake Manifold Setyawan Bekti Wibowo, Soeadgihardo Siswantoro, Program Diploma Teknik Mesin , Sekolah Vokasi, Unive
Jurnal Rekayasa Mesin Vol 10, No 2 (2015): Volume 10, Nomor 2, Agustus 2015
Publisher : Jurusan Teknik Mesin - Politeknik Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32497/rm.v10i2.213

Abstract

Pada sepeda motor kualitas pencampuran udara dengan bahan bakar akan menentukan kualitas pembakaran dan emisi yang terjadi. Penambahan turbulator akan meningkatkan turbulensi sehingga menyebabkan campuran bahan bakar menjadi lebih homogen dan menjadi pembakaran sempurna. Akan tetapi efek dari penambahan turbulator akan menyebabkan kenaikan hambatan aliran yang menyebabkan jumlah bahan bakar yang masuk ruang bakar akan mengalami gangguan. Dalam penelitian ini dilakukan pengamatan nilai paling optimal penambahan turbulator dengan memvariasikan sudut serang sudu turbulator dengan sudut 350, 450, dan 550 serta posisi penempatan turbulator di intake manifold untuk jumlah sudu turbulator 2, 3, dan 4 bilah. Selain itu juga diamati visualisasi aliran menggunakan metode numerik untuk melihat pola aliran yang terjadi akibat penambahan turbulator.Hasil penelitian menunjukkan bahwa penambahan turbulator dengan 2 bilah sudu di bagian belakang dengan sudut 450 menghasilkan emisi yang paling baik, dikarenakan peningkatan olakan pada saluran sementara penurunan tekanan selama di saluran intake manifold cukup kecil.Kata kunci : “turbulator”,”emisi”, “metode numerik”, “intake manifold”, “pembakaran sempurna”
The development of GAMA Swab sampling chamber for walk-through sampling in patients with COVID-19 at Gadjah Mada Hospital Hera Nirwati; Dwi Aris Agung Nugrahaningsih; Siswanto Siswanto; Mahatma Sotya Bawono; Titien Budhiaty; Setyawan Bekti Wibowo; Raden Sumiharto
Journal of Community Empowerment for Health Vol 3, No 2 (2020): Special Issue of COVID-19
Publisher : Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcoemph.57547

Abstract

Collecting swab samples from the nasopharynx and oropharynx of patients with COVID-19 is essential in detecting SARS-CoV-2. This procedure potentially produces sufficient droplets. Since SARS-CoV-2 is transmitted through droplets, swab sampling has to be done carefully to prevent the risk of transmission to healthcare workers or the cross-contamination to the environment. The GAMA Swab Sampling Chamber (GSSC) is a positive-pressure chamber designed for collecting swab samples involving the healthcare worker positioned inside, while the patient is outside the chamber. The chamber is designed to minimize the risk of aerosol exposure to the healthcare worker due to leakage or when opening or closing the door. Accordingly, the healthcare worker does not need to use complete personal protective equipment (PPE) as they do when collecting swab samples without the chamber. After several tests to check the safety and the chamber’s function, the GSSC was used at Gadjah Mada Hospital. This chamber had been used to swab 51 asymptomatic patients, 72 suspected patients, and 284 voluntary persons for ten weeks. The results of reverse transcription-polymerase chain reaction (RT-PCR) examination of all samples from asymptomatic patients were negative, while 2 of 72 suspected patients (2.8%) and 4 of 284 voluntary persons (1.4%) had positive RT-PCR results. The use of GSSC can simplify the swab sampling, also reduces the need for PPE usage and a negative pressure isolation room which are limited in the current pandemic situation.
Assessment of Physical and Chemical Quality Standards for Water and Sanitation Disclosure Towards SDG 6: A Study in Wijimulyo, Nanggulan, Kulon Progo Regency Kurniawan, Muhammad Prasetya; Wibowo, Setyawan Bekti; Hidayah, Nurulia; Santoso, Probo; Octaviani, Danis Syalwa; Larasati, Errika Anggraini; Rachman, Atika Yulia; Nurramdhana, Almaira Daffa; Mahardini Gunawan, Citra Aulia
Jurnal Pengabdian kepada Masyarakat (Indonesian Journal of Community Engagement) Vol 10, No 2 (2024): June
Publisher : Direktorat Pengabdian kepada Masyarakat Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jpkm.90890

Abstract

Collaboration between academics, educators, students, village civil servants, and the community is needed to implement Sustainable Development Goal (SDG) 6. It is related to clean water and sanitation in the context of training vocational teachers and students to provide it to the community. First, measurements were made of the water quality around the research area. Sixty-three water samples were drawn from each resident's home's water supply. A multi-parameter water quality checker was used to evaluate the samples, and then spatial data processing was used. A temperature of 24.1 C, turbidity of 0.4 NTU, conductivity of 0.4 mS/cm, pH 7.1, salinity of 0.2 ppt, DO of 5.9 mg/l, and TDS value of 267 mg/l were measured. These average results indicate that the water quality satisfies both Indonesian National Standard 3553:2015 and the water quality criteria set by the Minister of Health of the Republic of Indonesia Regulation No. 2 Year 2023. However, the results of tracking every sampling location show that several samples fall short of water quality requirements because of the high mineral content, weather, and other factors. Every school and community organization needs to run scenarios to raise awareness about water quality standards involving the government, non-governmental organizations, and the private sector to implement SDGs 6, such as stakeholder engagement, community enhancement, and policy and regulation.
Studi Kasus Perancangan Rangka Motor Listrik Tipe Naked Bike Menggunakan ANSYS Putra, Arya Pratama; Basuki, Budi; Sugiyanto; Wibowo, Setyawan Bekti
Jurnal Teknik Mesin Indonesia Vol. 20 No. 1 (2025): Vol. 20 No. 1 (2025): Jurnal Teknik Mesin Indonesia
Publisher : Badan Kerja Sama Teknik Mesin Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36289/jtmi.v20i1.482

Abstract

The function of the frame on the electric motorcycle is to support the rider's load and where several motor components are combined, and also acts as the basic form of the motorcycle itself. The design of the electric motorcycle frame design also needs a finite element analysis. The analysis computes and produces formulas to estimate the actions that can be performed on the object, where this method involves dividing the structure into smaller elements connected by nodes or in other words, the discretization of elements. The objective of this research is to analyze the yield strength level of the electric motorcycle frame design under static loading conditions in accordance with the load safety standards of two-wheeled vehicles in Indonesia. The subject of this research is an electric motorcycle frame design with a naked bike frame type. The material used in the frame is aluminum alloy 6061 T6. The total loading during simulation is 265 kg. The quality of element discretization obtained in the electric motorcycle frame design is 0,278 with the size of each element of 5,5 mm. The maximum von Misses stress obtained is 125,3 MPa with a maximum deformation of 0,08618 mm and the safety factor is 2,154. The results of this study provide a statement that the electric motor frame design is able to withstand the load during simulation.