Claim Missing Document
Check
Articles

Implementasi Supply Chain Management Pada Toko Sandal Menggunakan Aplikasi Dolibarr (Studi Kasus : Kroya Shoes) Damayanthi, Ni Luh Putu Ari Yunia; Putri, Gusti Agung Ayu; Mandenni, Ni Made Ika Marini
JITTER : Jurnal Ilmiah Teknologi dan Komputer Vol 3 No 3 (2022): JITTER, Vol.3, No.3, December 2022
Publisher : Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1315.123 KB) | DOI: 10.24843/JTRTI.2022.v03.i03.p09

Abstract

Information technology is currently undergoing changed and developments so rapidly that many trading companies need technology to support business proceses. Kroya Shoes is small company that sell various model of sandals made from synthetic leather. Problem in carrying out inventory management, difficulties in Enterprise Resource Planning (ERP) and problem often occur in the Supply Chain Management (SCM) of the company. The company' s business processes are implemented into dolibarr open source software. The final stage of the research was carried out using UAT questionaire and calculating the level of satisfaction of Dolibarr aplication user's with a likert scale. Calculation results the results of the survey carried out where to produce an average value with the convenience aspect of 67,5%, the average percentage value with usability aspect was 91,5% so that the total percentage obtained from all aspects was 79,5 % with a description of the score interpretation criteria, namely Good.
Perbandingan Metode EUCS dan WebQual Mengenai Kualitas Layanan Terhadap Pengguna (Studi Kasus: Krs Poltekkes Denpasar) Fatmawati, Fatmawati; Sukarsa, I Made; Mandenni, Ni Made Ika Marini
JITTER : Jurnal Ilmiah Teknologi dan Komputer Vol 3 No 1 (2022): JITTER, Vol.3, No.1, April 2022
Publisher : Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (559.698 KB) | DOI: 10.24843/JTRTI.2022.v03.i01.p28

Abstract

Perkembangan sistem informasi semakin meningkat, hal ini berdampak pada kualitas layanan . Kualitas layanan berpengaruh pada kepuasan pengguna terhadap sistem informasi KRS Poltekkes Denpasar. Penilaian mutu layanan atas kepuasan pengguna dapat digunakan metode EUCS dan WebQual. Kedua metode tersebut memiliki perbedaan dalam pengukuran indikator, untuk itu dilakukan perbandingan guna mengetahui metode yang lebih unggul dalam dua pengujian. Perbandingan nilai pada uji pertama dan uji kedua antara dua metode mendapat hasil temuan yang cukup signifikan, proses yang dinilai melingkupi perbaikan yang cukup baik yang mempertimbangkan komentar saran dari responden. Hasil penelitian ini menunjukkan bahwa kedua metode memiliki keunggulan masing-masing pada indikator yang berbeda sehingga dibandingkan kedua metode tersebut.
Analisis Respon Pelanggan Terhadap Suatu Produk Dengan Metode Support Vector Machine (SVM) setiawan, kadek dede; Marini Mandenni, Ni Made Ika; Githa, Dwi Putra
JITTER : Jurnal Ilmiah Teknologi dan Komputer Vol 3 No 2 (2022): JITTER, Vol.3, No.2, August 2022
Publisher : Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1384.942 KB) | DOI: 10.24843/JTRTI.2022.v03.i02.p05

Abstract

Perkembangan teknologi informasi membuat terjadinya perubahan metode belanja masyarakat dimana masyarakat dapat berbelanja secara online. penjualan secara online membuat konsumen tidak dapat melihat produk secara langsung dimana konsumen hanya dapat melihat foto dan ulasan produk sebagai pertimbangan dalam berbelanja. Respon pelanggan adalah reaksi pelanggan atau konsumen terhadap suatu produk dimana reaksi ini dapat mempengaruhi tanggapan konsumen terhadap suatu produk. Respon pelanggan dapat berupa data ulasan produk dimana data ulasan produk yang berberntuk teks dapat diklasifikasikan dengan metode text mining dan algoritma Support Vector Machine (SVM). Penelitian ini melakukan klasifikasi berdasarkan data ulasan produk kosmetik pada website https://femaledaily.com/ dimana klasifikasi dikelompokkan berdasarkan jenis kulit dan umur konsumen. Hasil pengujian dengan menggunakan metode SVM menunjukan akurasi tertinggi sebesar 90% dan akurasi terendah sebesar 81%.
IMPLEMENTASI MACHINE LEARNING UNTUK MENINGKATKAN KUALITAS OPERASIONAL SERVICE KENDARAAN DENGAN METODE RANDOM FOREST DAN LOGISTIC REGRESSION Mandenni, Ni Made Ika Marini; Wiratama, I Putu Bayu Adhya; Setiawan, Ariyono; Putri, Gusti Agung Ayu; Dana, I Putu Ngurah Krisna
Jurnal Praksis dan Dedikasi Sosial (JPDS) Vol 7, No 2 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um032v7i2p206-213

Abstract

IMPLEMENTATION OF MACHINE LEARNING TO IMPROVE THE QUALITY OF VEHICLE SERVICE OPERATIONS WITH RANDOM FOREST AND LOGISTIC REGRESSION METHODS Vehicle motor repairs (service) are an important aspect for motor vehicle owners to undertake. This activity is carried out by automotive workshops to ensure that the customer's vehicle is in prime condition. To boost sales, some automotive workshops offer various promotional packages to attract customer interest. However, in practice, this is done manually by workshop staff, resulting in suboptimal performance in offer presentations (customer calls). This research aims to build a recommendation system for package deals and offer dates to enhance the quality of customer calls in the operations of automotive workshops using Random Forest and Logistic Regression. The dataset used is operational data from customer calls at one automotive workshop in Bali. The Random Forest model achieves 91 percent accuracy, while Logistic Regression achieves 72 percent accuracy. The system developed can be used to recommend good package deals and offer dates to customers. Perbaikan kendaraan bermotor (service) merupakan hal penting untuk dilakukan bagi pemilik kendaraan bermotor. Kegiatan ini dilakukan oleh bengkel otomotif untuk memastikan kondisi kendaraan customer dalam kondisi prima. Untuk meningkatkan penjualan, beberapa bengkel otomotif menawarkan berbagai paket promo untuk menarik minat customer. Namun dalam pelaksanaannya, hal ini dilakukan secara manual oleh staff bengkel yang mengakibatkan performa penawaran (customer call) kurang optimal. Penelitian ini bertujuan untuk membangun sistem rekomendasi paket dan tanggal penawaran untuk meningkatkan kualitas customer call pada operasional bengkel otomotif menggunakan Random Forest dan Logistic Regression. Dataset yang digunakan adalah data operasional customer call salah satu bengkel otomotif di Bali. Model Random Forest mencapai akurasi 91 persen dan Logistic Regression mencapai akurasi 72 persen. Sistem yang dibangun dapat digunakan untuk merekomendasikan paket dan tanggal penawaran yang baik untuk ditawarkan kepada customer.
Web-Based Human Resource Management System Using Laravel Framework Vira Deva, Made Marshall; Marini Mandenni, Ni Made Ika; Putra Githa, Dwi
Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) Vol 13 No 1 (2025): Vol. 13, No. 1, April 2025
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JIM.2025.v13.i01.p03

Abstract

This research developed a web-based human resource management system to address manual HR management issues in a financial institution. Manual HR management created challenges including difficult data integration, high risk of recording errors, and inefficient processes. The system was developed using the agile method with MySQL database, Laravel framework, and PHP programming language. This system integrated employee management, performance assessment, payroll, and recruitment modules. Testing was conducted using User Acceptance Testing (UAT) and stress testing method. Research results showed that the system successfully met user needs by optimizing digital and integrated employee data management. The system provided real-time information access, facilitated performance evaluations, and generated comprehensive HR reports. The implementation of this system improved operational efficiency, data accuracy, and decision-making quality through integrated HR management processes.
Analisis dan Manajemen Risiko Keamanan Aset Teknologi Informasi Menggunakan Metode OCTAVE dan FMEA Berbasis ISO 27001:2022: Studi Kasus : Perusahaan XYZ Ajeng Wahyuningtyas; Ni Made Ika Marini Mandenni; Muhammad Alam Pasirulloh
Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi Vol. 3 No. 2 (2025): Mei : Neptunus : Jurnal Ilmu Komputer Dan Teknologi Informasi
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/neptunus.v3i2.796

Abstract

The advancement of information technology has driven companies to adopt technology-based systems to enhance operational efficiency while also increasing the complexity of information security risks. This study aims to analyse risk factors associated with information security assets, identify potential threats, assess risks, and provide mitigation recommendations. The OCTAVE method was applied to identify threats, vulnerabilities, and critical information technology assets, while FMEA was used to determine risk mitigation priorities based on the Risk Priority Number (RPN). The mitigation recommendations were developed in accordance with ISO 27001:2022 standards. Data collection was conducted through interviews with XYZ company representatives, identifying 34 information security asset risks, including 6 hardware failure potentials, 6 software failure potentials, 14 data failure potentials, 4 human resource failure potentials, and 4 network failure potentials. The risk categorisation results revealed 5 high-level risks, 6 moderate-level risks, 20 low-level risks, and 3 very low-level risks. The mitigation recommendations include three ISO/IEC 27001:2022 clauses: Human Resource Controls, Physical Controls, and Information Technology Controls.
Analisis Sentimen Publik Terkait Kekerasan Seksual di Indonesia dengan Algoritma Naïve Bayes dan SVM Nalista, Ni Made Naila; Mandenni, Ni Made Ika Marini; Suarjaya, I Made Agus Dwi
JURIKOM (Jurnal Riset Komputer) Vol 12, No 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8556

Abstract

Semakin meningkatnya kasus kekerasan seksual yang terjadi di Indonesia, dan media sosial merupakan ruang bagi masyarakat Indonesia untuk mengekspresikan pendapat. The increasing number of sexual violence cases in Indonesia, along with the role of social media as a space for the public to express their opinions, forms the basis for this research. The study aims to classify various types of public sentiment expressed on X (formerly Twitter) and Instagram comments by applying two algorithms for comparison: Naïve Bayes and SVM. Several processes carried out, including data collection from social media, data preprocessing, manual labeling, and the implementation of both algorithms on the processed dataset. The data sources utilized are posts written in Indonesian on X (Twitter) and Instagram, focusing on issues of sexual violence in Indonesia. The sentiment analysis results were grouped into three main categories: positive, negative, and neutral. The outcomes show that SVM achieved an accuracy of 82.17% using an 80:20 data split without applying GridSearch for optimization. The SVM results outperformed those of Naïve Bayes, which achieved an accuracy of 78.92%. This investigation leads to the conclusion that SVM is more optimal in analyzing public sentiment related to sexual violence in Indonesia compared to Naïve Bayes. The sentiment analysis results from social media regarding sexual violence in Indonesia show that the majority of sentiments are neutral, with the dataset being dominated by informative content, case reports without emotional expression, and off-topic comments
AUDIT TATA KELOLA TEKNOLOGI INFORMASI DI RSUD X MENGGUNAKAN FRAMEWORK COBIT 2019 I Komang Satria Wibawa; Anak Agung Ngurah Hary Susila; Ni Made Ika Marini Mandenni
Jurnal Manajemen dan Teknologi Informasi Vol. 15 No. 2 (2025): Jurnal Manajemen dan Teknologi Informasi
Publisher : Fakultas Teknik dan Informatika Universitas PGRI Mahadewa Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59819/jmti.v15i2.5425

Abstract

An IT governance audit at X Hospital was conducted due to various issues affecting service quality and system performance. Critical points included an overloaded database that resulted in suboptimal website information updates, inadequate server specifications to run the website when users were active, poorly managed network cables that made the server vulnerable to disruptions, and an under-protected IT unit in website management. The study aimed to identify critical points, elicit IT process capabilities, and provide improvement recommendations based on the COBIT 2019 Framework. The methods used included interviews, observations, business goal mapping and alignment, and a capability level questionnaire. The audit results identified five main domains, namely APO12, BAI10, DSS02, DSS03, and DSS04, all at capability level 2. Recommendations included IT risk integration, asset management, accelerated incident handling, improved service and satisfaction, and rapid adaptation to increase capabilities to levels 3, 4, and 5.
Analisis Sentimen Publik Terkait Kekerasan Seksual di Indonesia dengan Algoritma Naïve Bayes dan SVM Nalista, Ni Made Naila; Mandenni, Ni Made Ika Marini; Suarjaya, I Made Agus Dwi
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8556

Abstract

Semakin meningkatnya kasus kekerasan seksual yang terjadi di Indonesia, dan media sosial merupakan ruang bagi masyarakat Indonesia untuk mengekspresikan pendapat. The increasing number of sexual violence cases in Indonesia, along with the role of social media as a space for the public to express their opinions, forms the basis for this research. The study aims to classify various types of public sentiment expressed on X (formerly Twitter) and Instagram comments by applying two algorithms for comparison: Naïve Bayes and SVM. Several processes carried out, including data collection from social media, data preprocessing, manual labeling, and the implementation of both algorithms on the processed dataset. The data sources utilized are posts written in Indonesian on X (Twitter) and Instagram, focusing on issues of sexual violence in Indonesia. The sentiment analysis results were grouped into three main categories: positive, negative, and neutral. The outcomes show that SVM achieved an accuracy of 82.17% using an 80:20 data split without applying GridSearch for optimization. The SVM results outperformed those of Naïve Bayes, which achieved an accuracy of 78.92%. This investigation leads to the conclusion that SVM is more optimal in analyzing public sentiment related to sexual violence in Indonesia compared to Naïve Bayes. The sentiment analysis results from social media regarding sexual violence in Indonesia show that the majority of sentiments are neutral, with the dataset being dominated by informative content, case reports without emotional expression, and off-topic comments
Co-Authors A.A. Istri Alit Dwi Purnamaningrat Ajeng Wahyuningtyas Anak Agung Ketut Agung Cahyawan Wiranatha Anak Agung Kompiang Oka Sudana Anak Agung Ngurah Hary Susila Anak Agung Putu Mahendra Putra Assegaf, Achmad Jefri Ayu Widyastuti Purnamasari Ayu Wirdiani Clarissa Anindita Damayanthi, Ni Luh Putu Ari Yunia Dana, I Putu Ngurah Krisna Dwi Putra Githa Dwi Rusjayanthi, Dwi Erna Yulianti Fatmawati Fatmawati Gede Yudha Prema Pangestu Gideon Setya Budiwitjaksono Gilang Ramadhan, Rizki Aditiya Gusti Agung Ayu Putri Hafidz Amarul M I Dewa Gede Wahya Dhiyatmika I Gede Susrama Mas Diyasa I Gede Susrama Masdiyasa I Gusti Made Ngurah Ardi Yasa I Kadek Erik Priyanto I Kadek Owen Nirvana Kaskora I Ketut Adi Purnawan I ketut Gede Darma Putra I Komang Agus Ady Aryanto I Komang Satria Wibawa I Made Agus Dwi Suarjaya I Made Dharmawan Setiadi I Made Oka Mahendra Putra I Made Sukarsa I Nyoman Dita Pahang Putra I Nyoman Piarsa I Putu Agus Eka Pratama Ida Ayu Wahyu Kumara Putri Ida Bagus Gede Jayeng Gotama Ilham Ade Widya Sampurno Irianto Yohanes Sampe James Kawilarang Mohammad Rafka Mahendra A Muhammad Alam Pasirulloh Nalista, Ni Made Naila Narayana, I Putu Kevin Ari Ni Putu Intan Waindika Dharma Pande Made Satrya Dinata Panji Wiratama Santoso Parayana, I Putu Mega Putra Prasta, I Gede Andi Primanggara Gamaswara Putra Githa, Dwi Putra, I Putu Bayu Aditya Putu Anantha Prasetya Yogantara Putu Arismawan Jaya Kusuma Putu Arya Hening Tryasthana Putu Eka Suryadana Putu Riyaldi Putra Narendra Putu Wira Buana Rangga Laksana A Redana, Made Gede Gumiar Putra Santoso, Panji Wiratama Sasmita, Gusti Made Arya Setiawan, Ariyono setiawan, kadek dede Vira Deva, Made Marshall Widiana Putra Winarta Wiratama, I Putu Bayu Adhya Yusliza Binti Mohd Yasin