Claim Missing Document
Check
Articles

Found 24 Documents
Search

PENGARUH COLD EGR TERHADAP BRAKE POWER PADA MESIN DIESEL DENGAN BAHAN BAKAR CAMPURAN SOLAR DAN JATROPHA Eka Darmana; Syaiful -; Berkah Fajar
Eksergi Vol 9, No 3 (2013): SEPTEMBER 2013
Publisher : Politeknik Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (189.804 KB) | DOI: 10.32497/eksergi.v9i3.183

Abstract

Penggunaan mesin diesel di segala sektor telah meningkatkan konsumsi bahan bakar fosil  yang berdampak pada cadangan bahan bakar semakin penipis sehingga butuh bahan bakar alternatif.   Disisi lain, mesin diesel memiliki masalah yang fundamental yaitu emisi gas buang yang berupa NOx dan jelaga. Salah satu alternatif bahan bakar yang dapat diperbaharui adalah biodiesel minyak jarak (jatropha), akan tetapi emisi NOx yang dihasilkan cukup tinggi. Penggunaan EGR membantu mereduksi emisi NOx tersebut, akan tetapi masih diperlukan pengkajian dampak EGR terhadap performa mesin diesel dengan memakai bahan bakar biodiesel. Bahan bakar yang digunakan adalah campuran solar dan jatropha dengan berbagai variasi. Pengujian dilakukan pada putaran mesin konstan 2000 rpm, dengan memvariasi bukaan katup EGR dari 0%  - 100% dengan inteval 25% pada setiap pembebanan. Pengujian dilakukan pada setiap variasi campuran bahan bakar. Hasil penelitian menunjukkan bahwa brake power bahan bakar campuran cenderung menurun ketika dioperasikan dengan cold EGR kecuali pada OEV 75% dengan pembebanan 50% terjadi peningkatan brake power sebesar 2,58% untuk bahan bakar D80J20. Brake power juga tendensi menurun dengan pemakaian  bahan bakar campuran dibandingkan bahan bakar solar.
PENGEMBANGAN PENYIMPAN AIR PANAS PADA SISTEM HIBRID SOLAR THERMAL AIR CONDITIONING Yudhy Kurniawan; Kusnandar Kusnandar; Berkah Fajar Tamtomo Kiono; M.S.K Tony Suryo Utomo
ELEMEN : JURNAL TEKNIK MESIN Vol 6 No 2 (2019)
Publisher : POLITALA PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (505.731 KB) | DOI: 10.34128/je.v6i2.107

Abstract

Pemanfaatan panas AC split sebagai pemanas air saat ini sudah dirintis namun masih banyak menggunakan heater dari energi listrik. Begitu pula pemanfaatan radiasi panas matahari sebagai sumber pemanas juga sudah banyak dibuat. Pada penelitian ini membahas jika kedua system tersebut digabung menjadi system hybrid-Solar Thermal Air Conditioner. Yaitu system yang menggabungkan panas refrijeran pada discharge line kompresor AC split dan panas solar kolektor. Alat ini sudah dibuat pada penelitian sebelumnya hanya saja terbatas pada analisis terhadap pencapaian temperatur pemanasan 40 oC dalam waktu 20 menit. Namun kendala yang dialami panas belum bisa bertahan lebih lama karena memanfaatkan waktu beban puncak dari radiasi matahari, dan isolasi tangki yang tipis. Untuk itu dikembangkan sistem hibrid dengan penggantian tangki pemanas air. Metodenya diawali dengan membuat model modifikasi sistem hibrid, penentuan material insulasi tangki dan ketebalan dinding penyimpan panas agar heat loss air dapat direduksi. Kemudian pada solar collector dimodifikasi dengan instalasi pipa seri serta sudut kemiringan kolektor 20o. Untuk sirkulasi aliran refrijeran dari discharge line kompresor ditambahkan kontrol otomatis, hal ini diharapkan kinerja alat lebih maksimal. Hasil yang diperoleh dapat diketahui seberapa efektif waktu penyimpanan air panas dan kinerja dari system tersebut.
Studi performa aerodinamis turbin hidrokinetik Savonius dengan 2 semicircular blade-sharp leading edge Khoiri Rozi; Berkah Fajar; M. Rasyid
METAL: Jurnal Sistem Mekanik dan Termal Vol 6, No 1 (2022): Jurnal Sistem Mekanik dan Termal (METAL)
Publisher : Department of Mechanical Engineering, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1741.977 KB) | DOI: 10.25077/metal.6.1.43-52.2022

Abstract

This current investigation was conducted to study the aerodynamic characteristics of Savonius hydrokinetics turbine with semicircular blade-sharp leading edge. The influences of blade thickness and freestream velocity were simulated using ANSYS FLUENT with k-w SST model. The results show that the flow structure changes with increasing turbine rotation in which the flow complexity is formed at a larger rotation angle. The coefficient of torque and power for thin blades is higher than for thicker turbine blades and its values increase with the increase in the freestream velocity.
Perancangan Water Cooled Scroll Chiller R290 dengan Kapasitas 20 TR menggunakan Software CoolPack Kiono, Berkah Fajar Tamtomo; Prakoso, Satrio Budi; Widayat, Widayat; Djaeni, M.
Jurnal Profesi Insinyur Indonesia Vol 2, No 2 (2024): JPII
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpii.2024.20998

Abstract

Konsumsi energi dunia meningkat dengan bertambahnya tuntutan kenyamanan dan jumlah penduduk. Pemanasan global terjadi karena konsumsi energi dan meningkatnya penggunaan Air Conditioner. Pemanasan global juga disumbangkan oleh emisi refrigeran ke atmosfer. Banyak peneliti mencoba menciptakan refrigeran pengganti untuk mengurangi pemanasan global. Penyebab pemanasan global ini disebabkan unsur F yang terdapat di refrigeran. R290 sebagai refrigeran alami adalah refrigeran yang lebih ramah lingkungan dengan nilai ODP (Ozone Depletion Potential) adalah 0 dan nilai GWP (Global Warming Potential) adalah 3. Perancangan ini dilakukan untuk mengembangkan chiller menggunakan refrigeran R290. Perancangan ini meliputi analisis siklus, dimensioning, dan gambar perancangan untuk Chileer kapasitas pendinginan 20 TR (70,3 kW). Analisis siklus dan dimensioning dilakukan menggunakan perangkat lunak CoolPack. Hasil analisis siklus dan dimensi adalah sebuah chiller dengan kapasitas pendinginan 70,3 kW, daya kompresor 20,2 kW, dan 3,45 COP. Peralatan utama yang dipilih adalah Copeland Emerson untuk kompresor dengan daya 20,2 kW, Bitzer DH2-163 untuk evaporator, Alfa Laval CXP 143-XS-2P untuk kondensor, Danfoss TGE 10-11 untuk katup ekspansi, dan Packless HXR-250A untuk LSHX (Liquid Suction heat Exchanger). Kata kunci: global warming, energy, propane, chiller, CoolPack
Karakteristik Aliran Turbin Hidrokinetik Savonius Susunan Inward dan Outward Overlap dengan Dua Semicircular Blade-Flat Leading Edge Rozi, Khoiri; Kiono, Berkah Fajar Tamtomo; Haryanto, Ismoyo; Rahmansyah, Adam
Journal of Mechanical Design and Testing Vol 5, No 2 (2023): Articles
Publisher : Department of Mechanical and Industrial Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jmdt.74371

Abstract

Penelitian ini dibuat untuk mempelajari medan aliran melalui turbin hidrokinetik Savonius dengan flat-leading edge. Pengaruh ketebalan blade, overlap, dan kecepatan freestream disimulasikan menggunakan ANSYS FLUENT dengan model k-w SST. Hasil penelitian menunjukkan bahwa struktur aliran berubah seiring dengan meningkatnya putaran turbin dengan kompleksitas aliran terbentuk pada sudut putar yang lebih besar. Posisi inward dan outward overlap menciptakan pola aliran lebih kompleks. Koefisien torsi dan daya untuk blade tipis lebih tinggi daripada blade yang lebih tebal dan nilainya meningkat dengan peningkatan kecepatan aliran bebas.
STUDI NUMERIK PENGARUH VARIASI KEMIRINGAN DAN KETINGGIAN STEP TERHADAP MEDAN ALIRAN MELALUBACKWARD-FACING STEP Fahmi, Heydar Nur; Rozi, Khoiri; Tamtomo Kiono, Berkah Fajar
JURNAL TEKNIK MESIN Vol 11, No 4 (2023): VOLUME 11, NOMOR 4, OKTOBER 2023
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini mengkaji performa aliran saat melewati saluran tertutup berbentuk backward-facing step (BFS). Metode penelitian yang digunakan adalah Computational Fluid Dynamics (CFD) berbasis ANSYS FLUENT 2022 dengan model turbulensi k-ε realizable. Pengaruh kemiringan dan perubahan tinggi step terhadap karakteristik distribusi aliran disimulasikan dengan dua variasi bilangan Reynolds yaitu Re = 1,5 x 104 dan 9 x 104. Hasil simulasi dari penelitian ini mengungkapkan bahwa perubahan kemiringan dan ketinggian step menyebabkan perubahan pada zona resirkulasi. Dimana efek perubahan kemiringan step memperlihatkan bahwa semakin besar sudut kemiringan step menyebabkan semakin berkurangnya zona resirkulasi dan panjang reattachment yang terbentuk. Sebaliknya, semakin bertambah tinggi step menyebabkan semakin besar zona resirkulasi dan panjang jarak reattachment yang terbentuk. Pengaruh perubahan energi kinetik turbulen dan distribusi tekanan akibat perubahan kemiringan dan ketinggian step juga ditemukan dalam penelitian ini. Setiap pertambahan sudut kemiringan step menyebabkan energi kinetik turbulen dan distribusi tekanan semakin kecil. Sedangkan setiap kenaikan ketinggian step menyebabkan energi kinetik turbulen dan distribusi tekanan semakin besar. Efek perbedaan antara dua bilangan Reynolds yang diuji pada semua variasi kemiringan dan ketinggian step juga menghasilkan perubahan terhadap pola pembentukan resirkulasi dan panjang reattachment dari backward-facing step yang diuji. This study aims to examine the flow performance when passing through a backward-facing step (BFS) channel. The method used in this research is Computational Fluid Dynamics (CFD) based on ANSYS FLUENT 16 with a realizable k-ε turbulence model. The effect of changing the height and slope of the steps on the flow characteristics is simulated with two different Reynolds numbers, namely Re = 1.5 x 104 and 9 x 104. The simulation results from this study reveal that changes in step height cause changes in the recirculation zone and reattachment distance, where The higher the step, the larger the recirculation zone and the longer the reattachment distance is formed. The effect of changing the slope angle of the steps in this study shows that the greater the slope of the steps, the less the recirculation zone and the reattachment length are formed. In this study it was also found that at each step height increase the turbulent kinetic energy increases. Meanwhile, the increase in the angle of inclination of the step causes the turbulent kinetic energy to decrease. The effect of changing the difference between the two Reynolds numbers tested did not produce significant changes to the pattern of recirculation formation and reattachment length with respect to all variations of step height and step slope from the backward-facing step that was tested.
Computational Fluid Dynamics Simulation of Temperature Distribution and Flow Characterization in a New Loop Heat Pipe Model Restiawan, Muhammad Mika Ramadhani; Kusuma, Mukhsinun Hadi; Rozi, Khoiri; Kiono, Berkah Fajar Tamtomo; Yunus, Muhammad; Wirza, Alif Rahman; Pambudi, Yoyok Dwi Setyo; ButarButar, Sofia Loren; Giarno, Giarno; Hatmoko, Sumantri
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 26, No 2 (2024): June 2024
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2024.7054

Abstract

The loop heat pipe (LHP) is considered for passive cooling systems in nuclear installations. A combined approach of simulation and experimentation is essential for achieving comprehensive knowledge of the LHP. Research on the LHP using Computational Fluid Dynamics (CFD) is necessary to understand phenomena that are challenging to ascertain experimentally. This study investigates the temperature distribution and flow characterization in a new LHP model. The method used in this research is simulation using CFD Ansys fluent software. In the simulation, the LHP has an inner diameter of 0.1016 m. This LHP features a wick made from a collection of capillary pipes without a compensation chamber. Demineralized water is used as the working fluid with a filling ratio of 100% of evaporator volume. The hot water temperature in the evaporator section is set at 70°C, 80°C, and 90°C. The temperature on the outer surface of the condenser pipe is determined using experimental temperature inputs. An inclination angle of 5° and an initial pressure of 12,100 Pa was applied to LHP. The CFD simulation results show that the temperature distribution profile under steady-state conditions in the  loop heat pipe appears almost uniform. The temperature difference between the evaporator and condenser remains consistent. The flow of working fluid in the LHP is driven by buoyancy forces and fluid flow, allowing the working fluid in the LHP to flow in two phases from the evaporator to the condenser and then condensate from the condenser back to the evaporator. In conclusion, the temperature distribution and flow patterns in the LHP are consistent with common phenomena observed in heat pipes. This modeling can be used to determine the profiles of temperature distribution and flow in LHP of the same dimensions under various thermal conditions.
Experimental Study of The Influences of Inclination Angle and Heat Load on Loop Heat Pipe Thermal Performance Pramesywari, Afifa; Kusuma, Mukhsinun Hadi; Kiono, Berkah Fajar Tamtomo; Rozi, Khoiri; Giarno, Giarno; Pambudi, Yoyok Dwi Setyo; Hatmoko, Sumantri; Emara, Haura
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 26, No 2 (2024): June 2024
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2024.7013

Abstract

The utilization of nuclear power brings out a lot of benefits in fulfilling human power needs, however, the thermal incident caused by the failure of an active cooling system because of an earthquake followed by the tsunami such as on the Nuclear Power Plant at Fukushima Dai-Ichi Japan could be taken for lesson learn to keep improve nuclear installation operation safety aspects. Loop heat pipe (LHP) as an alternative cooling system technology could be utilized to handle thermal problems on nuclear installations. This research aims to know the influence of the inclination angle and heat load on the LHP thermal performance. The experimental investigation was performed with varying the inclination angle of 0°, 2.5°, and 5°, and heat load given at 60°C, 70°C, 80°C, and 90°C. LHP was used demineralized water working fluid with a 100% filling ratio. LHP was vacuumed on 2.666,4 Pa. The cooling air velocity in the condenser given by 2,5 m/s. The result of this experiment showed that LHP has the best thermal performance with the lowest thermal resistance of 0.0043°C/W. This result was obtained when the LHP operated with a 5° inclination angle and hot water as the heat load of 90°C. The conclusion from this research is showing better LHP thermal performance as the inclination angle increase on LHP because the steam speed that formed bigger, and condensate flows back to the evaporator faster
Experimental Investigation of Natural Circulation Stability Phenomena in a New Loop Heat Pipe Model Wirza, Alif Rahman; Kusuma, Mukhsinun Hadi; Rozi, Khoiri; Kiono, Berkah Fajar Tamtomo; Restiawan, Muhammad Mika Ramadhani; Giarno, Giarno; Pambudi, Yoyok Dwi Setyo; Yunus, Muhammad; ButarButar, Sofia Loren; Hatmoko, Sumantri; Apriandi, Nanang; Pramesywari, Afifa
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 26, No 2 (2024): June 2024
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2024.7053

Abstract

The severe accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan in 2011 highlighted the critical need for a passive cooling system to dissipate residual decay heat following the failure of active cooling systems in the nuclear facility. The loop heat pipe (LHP) is a promising technology for such applications. The objective of this research is to understand the natural circulation stability phenomena of new LHP model under varying conditions of filling ratio and heat load. The experimental methodology employed a laboratory-scale LHP model made of copper with an inner diameter of 0.104 m. The experiments were designed with filling ratios of 20%, 40%, 60%, 80%, and 100%, and hot water temperature as the evaporator heat source with variations of 60°C, 70°C, 80°C, and 90°C. The initial operating pressure was 10665.6 Pa, with a 5˚ inclination angle, demineralized water as the working fluid, and cooled by air at a velocity of 2.5 m/s. The results show that the natural circulation within the LHP occurs in two phases and maintained stability, with optimal performance observed at an 80% filling ratio and 90°C. The conclusion of this research indicates that natural circulation stability in the LHP operates well and occurs in two phases, proving that natural circulation in the LHP is effective in heat dissipation.
Improving cross-axis wind turbine performance: A Lab-scale investigation of rotor size and blades number Achdi, Endang; Kiono, Berkah Fajar Tamtomo; Winoto, Sonny Handojo; Facta, Mochammmad
Mechanical Engineering for Society and Industry Vol 4 No 1 (2024)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.10837

Abstract

Horizontal and vertical-axis wind turbines have long been used to generate electricity in open areas by utilizing horizontal wind flow. Under certain conditions, for example in multi-storey building areas, wind flows not only from horizontal but also vertical directions. Therefore, this research aims to develop a new turbine model known as a cross-axis to capture wind flow from horizontal and vertical directions around multi-storey buildings. Design, production, testing, and performance analysis are carried out in this project. The model is designed with a rotor diameter of 700 mm which has 5 vertical blades and 10 horizontal blades with a total height of 600 mm which is divided into two configurations, upper and lower. Performance analysis was carried out using a wind tunnel in a conditioned laboratory both in loaded and unloaded conditions. The output power of the wind turbine is measured using an electric dynamometer. The no-load test was applied to determine the time required to move from non-rotating to constant rotation at different speeds and horizontal blade angles. Meanwhile, the load test is used to determine the power coefficient at various speeds, horizontal blade pitch angles, and loads. The research results show that the time required to move from a non-rotating speed to a constant speed is influenced by the wind speed and the blade pitch angle. The power coefficient was also observed to be influenced by wind speed, blade pitch angle, and load. Furthermore, the shortest time to reach a constant rotation speed is around 20 seconds at a wind speed of 7.6 m/s and a blade pitch angle of 25°. The maximum power coefficient of the wind turbine was obtained at 5.2% at a wind speed of 7.6 m/s, blade pitch angle of 25°, and tip speed ratio of 0.5.