Claim Missing Document
Check
Articles

PEMODELAN HYBRID ARIMA-ANFIS UNTUK DATA PRODUKSI TANAMAN HORTIKULTURA DI JAWA TENGAH Tarno Tarno; Agus Rusgiyono; Budi Warsito; Sudarno Sudarno; Dwi Ispriyanti
MEDIA STATISTIKA Vol 11, No 1 (2018): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.342 KB) | DOI: 10.14710/medstat.11.1.65-78

Abstract

The research purpose is modeling adaptive neuro fuzzy inference system (ANFIS) combined with autoregressive integrated moving average (ARIMA) for time series data. The main topic is application of Lagrange Multiplier (LM) test for input selection, determining the number of membership function and generating rules in ANFIS. Based on partial autocorrelation (PACF) plot, the lag inputs which are thought have an effect to data are evaluated by using LM-test. Procedure of LM test is applied to determine the optimal number of membership functions. Based on the result, a number of rule-bases are generated. The best model is applied for forecasting potato production data in Central Java. The case study of this research is modeling monthly data of potato production from January 2004 up to December 2016. From empirical study, ANFIS optimal was obtained with lag-1 and lag-11 as inputs with two membership functions and two fuzzy rules. The hybrid method based on ARIMA and ANFIS is also implemented. The result of the prediction with a hybrid method is compared to the ANFIS and ARIMA. Based on the value of Mean Absolute Percentage Error (MAPE), hybrid model ARIMA-ANFIS has a good performance as a model of ANFIS and ARIMA individually.Keywords: Time Series, Potato production, hybrid, ANFIS, ARIMA, LM-test
Modelling Inflation Sectors in Indonesia Using Vector Autoregressive (VAR) Prahutama, Alan; Suparti, S.; Ispriyanti, Dwi; Utami, Tiani Wahyu
Jurnal ILMU DASAR Vol 20 No 1 (2019)
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (192.443 KB) | DOI: 10.19184/jid.v20i1.7259

Abstract

Analisis time series dapat dibagi menjadi dua yaitu analisis time series univariat dan analisis time series multivariat. Analisis time series univariat salah satunya menggunakan ARIMA, sedangkan analisis time series multivariat dapat menggunakan VAR. VAR merupakan pemodelan persamaan simultan yang memiliki beberapa variabel endogen secara bersamaan. Asumsi dalam model VAR antara lain terjadi kausalitas antar variabel (kausalitas Granger), residual white noise dan berdistribusi normal multivariat. Pada paper ini, metode VAR diimplementasikan dalam memodelkan sektor-sektor Inflasi di Indonesia. Adapun sektor-sektor tersebut antara lain sektor makanan (Y1t),Sektor Makanan Jadi, Minuman, Rokok dan Tembakau (Y2), Sektor perumahan, listrik, air, gas dan bahan bakar (Y3), Sektor Sandang (Y4), Sektor Kesehatan (Y5), Sektor Pendidikan dan Olahraga (Y6), Sektor Transportasi, Komunikasi dan Jasa Keuangan (Y7). Hasilnya adalah tidak semua variabel sektor inflasi berpengaruh terhadap sektor lainnya. Hanya beberapa variabel yang berpengaruh terhadap suatu sektor. Asumsi kausalitas Granger tidak semua dipenuhi oleh semua variabel. Begitu juga dengan normal multivariat juga tidak terpenuhi. Akan tetapi residual model sudah white noise. Keywords: vector autoregressive model, sectors of inflation, Granger Causality.
K-MEANS CLUSTER COUNT OPTIMIZATION WITH SILHOUETTE INDEX VALIDATION AND DAVIES BOULDIN INDEX (CASE STUDY: COVERAGE OF PREGNANT WOMEN, CHILDBIRTH, AND POSTPARTUM HEALTH SERVICES IN INDONESIA IN 2020) Utami, Iut Tri; Suryaningrum, Fahlevi; Ispriyanti, Dwi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 2 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss2pp0707-0716

Abstract

One of the causes of the increasing maternal mortality rate in Indonesia is the declining performance of maternal health services in each Indonesian province. To overcome the decline in performance, namely by determining in advance the provinces that need to be prioritized for services by grouping 34 provinces in Indonesia. This study aims to obtain the best provincial grouping results so that it can prioritize the right provinces. One of the methods that are suitable for grouping provinces is K-Means because it is simple and easy to implement. The disadvantage of K-Means is that it is sensitive to determining the right number of initial clusters, so Silhouette Index and Davies Bouldin Index validation is used to obtain the optimal number of clusters with stable and consistent results. This study used healthcare data for pregnant women, childbirth, and postpartum with K=2, 3, and 4 as the initial cluster number. K-Means objects are grouped in similarities using Euclidean and Manhattan distances. The result obtained was the optimal number of clusters with K=2 using Manhattan, where the highest Silhouette Index value was 0,658685 and the lowest Davies Bouldin Index was 0,3561214 which met the criteria for determining the optimal cluster.
Co-Authors A Rusgiyono Abdul Hoyyi Agus Rusgiyono Agustinus Salomo Parsaulian Ain Hafidita Ajeng Dwi Rizkia Alan Prahutama Alan Prahutama Alvi Waldira Ana Kartikawati Anisa Septi Rahmawati Anjan Setyo Wahyudi Annisa Ayu Wulandari Arief Rachman Hakim Arkadina Prismatika Noviandini Taryono Arya Despa Ihsanuddin Arya Huda Arrasyid Atika Elsadining Tyas Aulia Ikhsan Avia Enggar Tyasti Azizah Mulia Mawarni Berta Elvionita Fitriani Bitoria Rosa Niashinta Budi Warsito Budi Warsito Cylvia Evasari Margaretha Dedi Nugraha Di Asih I Maruddani Di Asih I Maruddani Diah Safitri Diah Safitri Diah Wulandari Dita Ruliana Dwi Rahmayani, Dwi Dyan Anggun Krismala Dydaestury Jalarno Eis Kartika Dewi Endah Fauziyah Erna Sulistianingsih Erna Sulistio Evi Yulia Handaningrum Fadhilla Atansa Tamardina Firda Dinny Islami Firdha Rahmatika Pratami Fithroh Oktavi Awalullaili Gandhes Linggar Winanti Gera Rozalia Ghina Nabila Saputro Putri Hanifah Nur Aini Hasbi Yasin Hasbi Yasin Henny Widayanti, Henny Ilham Maggri Imam Desla Siena Innosensia Adella Irawati Tamara Iut Tri Utami Jesica, Haniela Puja Kishatini Kishartini Lifana Nugraeni Lingga Bayu Prasetya M. Ali Ma'sum Marlia Aide Revani Masfuhurrizqi Iman Maulida Azkiya, Maulida Maulida Najwa, Maulida Merinda Pangestikasari Moch. Abdul Mukid Moch. Abdul Mukid Muhammad Fitri Lutfi Anshari Muhammad Rosyid Abdurrahman Muhammad Zidan Eka Atmaja Mustafid Mustafid Mustafid Mustafid Nanci Rajagukguk, Nanci Nandang Fahmi Jalaludin Malik Nida Adelia Nidaul Khoir Nova Nova Noviana Nurhayati Nurwihda Safrida Umami Oka Afranda Pandu Anggara Pritha Sekar Wijayanti Puput Ramadhani Pusphita Anna Octaviani Puspita Kartikasari Putri Fajar Utami Rafida Zahro Hasibuan Rahafattri Ariya Fauzannissa Rahmah Merdekawaty Rahmaniar, Ratna Rany Wahyuningtias Ratih Nurmalasari, Ratih Ratna Pratiwi Ria Sutitis Rio Tongaril Simarmata Riszki Bella Primasari Rita Rahmawati Rita Rahmawati Riza Adi Priantoro Riza Fahlevi Sa'adah, Alfi Faridatus Sania Anisa Farah Setiani Setiani Sherly Candraningtyas Sindy Saputri Sisca Agustin Diani Budiman Sri Maya Sari Damanik Sudarno Sudarno Sudarno Sudarno Sudarno Sudarno Sudarno Sudarno Sugito - Sugito Sugito Sugito Sugito Suhendra, Muhammad Arif Suparti Suparti Suparti Suparti Suparti, S. Suryaningrum, Fahlevi Syilfi Syilfi Sylvi Natalia P P Tarno Tarno Tarno Tarno Tarno Tarno Tatik Widiharih Tatik Widiharih Tatik Widiharih Tiani Wahyu Utami Triastuti Wuryandari Triastuti Wuryandari Trimono Trimono Ulya Tsaniya Umiyatun Muthohiroh Warsito Budi Yani Puspita Kristiani Yashmine Noor Islami Yuciana Wilandari Yuciana Wilandari