Claim Missing Document
Check
Articles

Found 13 Documents
Search

Penentuan Sensitivitas dan Spesifisitas Kit PRIME-CYTO untuk Deteksi Kandungan Babi dengan Metode Polymerase Chain Reaction Iskandar, Aulia Syalwa; Safitri, Dina; Lidya, Bevi; Setyaningrum, Sinta
Halal Research Vol 3 No 1 (2023): February
Publisher : Halal Center ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j22759970.v3i1.579

Abstract

The Methylene Blue Adsorption by Calcium Alginate-Activated Carbon Composite in Fixed Bed Column Wardana Putra, Adzikri; Hermawan, Heru; Setyaningrum, Sinta; Paramitha, Tifa
Fluida Vol. 17 No. 2 (2024): FLUIDA
Publisher : Department of Chemical Engineering, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/fluida.v17i2.4926

Abstract

Methylene blue is a material that is often used as a cationic dye in the textile industry. Methylene blue is toxic and difficult to degrade. Adsorption is one method to reduce the methylene blue from wastewater. In this study, methylene blue was adsorbed by calcium alginate/activated carbon composite (CaAlg-AcC) in a fixed bed column. The influence of CaCl2.2H2O concentration, initial concentration of methylene blue, and flow rate in the continuous adsorption process were investigated. Every adsorption process was done in 110 min. The results revealed that the CaAlg-AcC composite synthesized using 1% (w/v) CaCl2.2H2O solution has the highest adsorption percentage, 95.28% in 110 min. The initial methylene blue concentration 50 mg/L gave the highest result of adsorption percentage with the smallest amount of methylene blue adsorbed of 31.77 mg.  The flow rate of methylene blue 4 ml/min reached the highest adsorption percentage with the amount of methylene blue adsorbed of 41.79 mg.
Effect of Water Hyacinth’s Particle Size as Additional Substrate to the Leachate Anaerobic Bioreactor Ramadhani, Laily Isna; Widyabudiningsih, Dewi; Wirawan, Feri; Almarnugraha, Aditya; Setyaningrum, Sinta
Fluida Vol. 17 No. 1 (2024): FLUIDA
Publisher : Department of Chemical Engineering, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/fluida.v17i1.5503

Abstract

Municipal solid waste leachate contains landfill-produced organic contaminants. Leachate with the high organic content pottentially pollute nearby waterways. The high content of pollutants in leachate is represented by the measured Chemical Oxygen Demand (COD) content. Therefore, leachate was carried out using the anaerobic method. The anaerobic approach was chosen because it can process high-organic waste and produce biogas, in which methane in biogas may be used as renewable energy. Leachate from old landfills is heavy in nitrogen, thus to optimize the anaerobic process, it must be mixed with high-carbon substrates. Water hyacinth, a fast-growing plant with a high carbon content, is a weed because it pottentially damage the ecosystem. This research begins by comparing the anaerobic reactor with a single substrate of leachate and a mixed substrate (leachate and water hyacinth). Water hyacinth was added with size variations of 1 mm; 5 mm; 10 mm; and 15 mm. From the four variations, the mixed substrate reactor had a higher COD reduction efficiency than the single substrate in all water hyacinth sizes. The optimum particle size of water hyacinth is 1 mm, resulted the highest COD reduction efficiency of 81% and the highest biogas cummulative volume of 4,230 mL. The addition of water hyacinth as an additional substrate statisticaly proven has a strong correlation to the increasing efficiency of COD removal compared to the biogas production.