Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : DINAMIKA DOTCOM

IMAGE QUILTING DALAM PERBESARAN CITRA TEKSTUR P., Diah Arifah
DINAMIKA DOTCOM DINAMIKA DOTCOM VOL 1 NO 2 TAHUN 2010
Publisher : DINAMIKA DOTCOM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAKTekstur dapat membuat objek-objek terlihat realistis, misalnya pada latar belakang suatu game. Objek yang berukuran yang besar akan memerlukan tekstur yang besar pula. Cara yang biasa digunakan oleh user untuk memperbesar citra yaitu dengan tiling dan stretching. Namun keduanya masih memiliki berbagai kekurangan. Kekurangan tersebut diperbaiki dengan menggunakan algoritma Image Quilting yang membentuk suatu tekstur baru dengan menggabungkan blok-blok yang diambil dari tekstur aslinya dan memiliki keuntungan yaitu tekstur yang dihasilkan memiliki kualitas yang hampir mirip dengan tekstur aslinya, serta prosesnya yang tidak membutuhkan waktu yang terlalu lama. Teknik ini memberi hasil yang cukup memuaskan dalam penerapannya pada citra dengan berbagai jenis tekstur yang berbeda. Sedangkan untuk kualitas citra yang dihasilkan aplikasi ini adalah cukup baik, terutama untuk citra yang memiliki pola tekstur yang jelas. Kata kunci : Image Qualting, tekstur, perbesaran citra
DECISION SUPPORT SYSTEM UNTUK PENENTUAN PENERIMAAN BEASISWA MENGGUNAKAN MULTIPLE ATTRIBUTE DECISION MAKING SIMPLE ADDITIVE WEIGTHED P., Diah Arifah
DINAMIKA DOTCOM DINAMIKA DOTCOM Vol 5 No 2 TAHUN 2014
Publisher : DINAMIKA DOTCOM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Scholarship funding is not sourced from own funds or a parent whogiven to increase the capacity of human resources through education. In every educational institution many scholarships are offered to students who excel and are less capable. To get the scholarship then it must conform to the rules that have been set. Criteria established in this study were age (C1), the number of dependent parent (C2), number of siblings (C3), the number of parents income (C4), the average value of report cards (C5), achievement (C6), the limit power is used (C7), home ownership status (C8). Selection of scholarship acceptance is done manually resulting in frequent occurrence of errors in determining the recipient beasiswa.Jumlah many participants who submitted scholarship criteria and indicators too much and in order to obtain the appropriate recipients in accordance with existing criteria, it is necessary to build a decision support system that will help determine scholarship recipients are eligible to receive the scholarship. In this study, the authors used a model of multiple attribute decision making, simple additive weighted method. In this method of assessment is based on criteria and the weight values that have been determined in advance, and then proceed with the ranking process that will select the best alternative. With this ranking process, the assessment would be more precise, more accurate results are obtained
PENYUSUNAN BASIS KAIDAH FUZZY BERDASARKAN PASANGAN INPUT-OUTPUT PADA SISTEM FUZZY Isyriyah, Laila; P., Diah Arifah
DINAMIKA DOTCOM DINAMIKA DOTCOM Vol 5 No 2 TAHUN 2014
Publisher : DINAMIKA DOTCOM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The implementation of fuzzy inference system on the real problems have been carried out by researchers from different scientific disciplines. Preparation of base rules plays a very important role when there is no rule of experts or the curse of dimensionality. The results of this research can be used as a reference to build the fuzzy rule base in the fuzzy inference system and a financial time series forecasting model by a heuristic method. The data used for the implementation is Kaotis McGlass time series data. From the kaotis data sets, a total of 600 items are divided into two groups, the first 300 items are used as a data base to develop rules while the other 300 items as predicted data. From the first group of data, input-output pairs are formed and are used as a constituent of fuzzy rule base. Steps being taken are: 1). Defining fuzzy sets that cover the entire input-output space, 2). Generating the rules of every single pair of input-output, 3). Provides a degree for each rule generated, 4). Constructing a fuzzy rule base, 5). Building a fuzzy system. There are 2 cases discussed: 4 inputs with 7 fuzzy sets, and 4 inputs with 15 fuzzy sets based on the value of Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE). In the first case 37 rules are formed, while in the second case as much as 101 rules are formed. The results of prediction using fuzzy system with 101 rules are more accurate than the results with only 37 rules are used.Keywords: Fuzzy Systems, Fuzzy Rule Base, Predictions