Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Computer Science and Information Technology (CoSciTech)

Pengelompokan pembagian zakat dengan menggunakan metode clustering k-means Alvin Alvin Anzaz Islami; Elin Haerani; Novriyanto; Alwis Nazir
Computer Science and Information Technology Vol 4 No 1 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i1.4804

Abstract

Zakat merupakan ibadah yang menyangkut harta benda. Zakat juga termasuk rukun islam yang ke empat yang memiliki tujuan menyucikan harta bagi setiap muslim dengan cara menyisihkan sebagian harta kekayaannya, jika telah mencapai waktu dan besaran jumlahnya diberikan kepada orang yang berhak menerimanya. Pengumpulan dan penyaluran zakat biasanya ditangani oleh Badan Amil Zakat (BAZ) yang ada disetiap wilayah Indonesia, salah satunya di Pekanbaru. Sesuai dengan peraturan ada dua tahap yang dilakukan dalam memberikan bantuan kepada para mustahik yaitu melakukan wawancara dan observasi lapangan, kemudian menentukan nominal bantuan yang diberikan dengan kategori Mustahik penerima bantuan zakat 1, zakat 2, dan zakat 3. Masalah yang sering dijumpai dalam penentuan calon penerima bantuan adalah cara dalam pemilihan Mustahik yang masih menggunakan cara manual, sehingga sering menimbulkan masalah seperti lamanya proses pemilihan dan terjadinya salah hitung sehingga hasil seleksi Mustahik menjadi kurang akurat. Untuk itu, perlu dibuat suatu analisis yang dapat mengolah data menjadi informasi. Data mining ialah proses untuk mengolah data menjadi suatu informasi dengan teknik statistik, AI, dan machine learning. Ada banyak metode dalam data mining. Pada penelitian ini menggunakan algoritma k-means clustering dan untuk pengujian menggunakan Davies Bouldin Index. berdasarkan pengujian menggunakan davies bouldin index (DBI) klaster 4 merupakan klaster terbaik dengan nilai 0.671, dimana jika nilainya semakin rendah maka akan semakin baik klaster tersebut