Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Performance Improvement of Deep Convolutional Networks for Aerial Imagery Segmentation of Natural Disaster-Affected Areas Nugraha, Deny Wiria; Ilham, Amil Ahmad; Achmad, Andani; Arief, Ardiaty
JOIV : International Journal on Informatics Visualization Vol 7, No 4 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.7.4.1383

Abstract

This study proposes a framework for improving performance and exploring the application of Deep Convolutional Networks (DCN) using the best parameters and criteria to accurately produce aerial imagery semantic segmentation of natural disaster-affected areas. This study utilizes two models: U-Net and Pyramid Scene Parsing Network (PSPNet). Extensive study results show that the Grid Search algorithm can improve the performance of the two models used, whereas previous research has not used the Grid Search algorithm to improve performance in aerial imagery segmentation of natural disaster-affected areas. The Grid Search algorithm performs parameter tuning on DCN, data augmentation criteria tuning, and dataset criteria tuning for pre-training. The most optimal DCN model is shown by PSPNet (152) (bpc), using the best parameters and criteria, with a mean Intersection over Union (mIoU) of 83.34%, a significant mIoU increase of 43.09% compared to using only the default parameters and criteria (baselines). The validation results using the k-fold cross-validation method on the most optimal DCN model produced an average accuracy of 99.04%. PSPNet(152) (bpc) can detect and identify various objects with irregular shapes and sizes, can detect and identify various important objects affected by natural disasters such as flooded buildings and roads, and can detect and identify objects with small shapes such as vehicles and pools, which are the most challenging task for semantic segmentation network models. This study also shows that increasing the network layers in the PSPNet-(18, 34, 50, 101, 152) model, which uses the best parameters and criteria, improves the model's performance. The results of this study indicate the need to utilize a special dataset from aerial imagery originating from the Unmanned Aerial Vehicle (UAV) during the pre-training stage for transfer learning to improve DCN performance for further research.
Co-Authors A.Y. Erwin Dodu A.Y. Erwin Dodu A.Y. Erwin Dodu Abdul Mahatir Najar Agustinus Kali Ahmad Ilham, Amil Albrecht Yordanus Erwin Dodu Amil Ahmad Ilham Aminuyati Amriana Amriana Amriana Amriana Andani Achmad Andi Hendra Andipa Batara Putra Angraeni, Dwi Shinta Ardiyansyah, Rizka Arief Pratomo Arief, Ardiaty Asminar Asminar Asri Arif Asriani Asriani, Asriani Asrul Sani Ayu Hernita Ayyub, Mohammad Azhar Baso Mukhlis Candriasih, Ni Kadek Chairunnisa Ar. Lamasitudju Chandra, Ferri Rama Dessy Santi Dharmakirti, Dharmakirti Djohari, Riyandi Dwitama Dodu, A. Y. Erwin Dodu, A.Y Erwin Dwi Shinta Angreni Dwi Wijaya, Kadek Agus Dwimanhendra, Muhammad Rifaldi Dwiwijaya, Kadek Agus Erwin Dodu, Albrecht Yordanus Fajriyah, Nurul Fanny Astria, Fanny Hajra Rasmita Ngemba Hamid, Odai Amer Hasanuddin Hasanuddin Imat Rahmat Hidayat Isminarti, Isminarti Jeprianto Rurungan, Jeprianto K. Julianto, K. Kalatiku, Protus P Krisna Rendi Awalludin Luh Putu Ratna Sundari Maharani, Wulan Mery Subito Mohamad Ilyas Abas Mohamad Irfan, Mohamad Nouval Trezandy Lapatta Novilia Chandra Paloloang, Muhammad Fairus B. Priska, Salsa Dilah Protus Pieter Kalatiku Putra, Subkhan Dinda Rahma Tanti Rahmah Laila Raivandy, I Made Randhy Rieska Setiawaty Rinianty, Rinianty Rizka Ardiansyah Rizky, Moh Taufiq Ryfial Azhar, Ryfial Septiana, Stevi Septiano Anggun Pratama Setiawan, Dita Widayanti Sri Khaerawati Nur Stevi Septiana Syahrullah Syahrullah Syaiful Hendra Thia Wydia Astuti Wawagalang, A. Nolly Sandra Wirdayanti Wisanti, Widya Yuli Asmi Rahman Yuri Yudhaswana Joefrie Yuri Yudhaswana Joefrie Yusuf Anshori Zulkifli Zulkifli