Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

Design and kinematic analysis of a two-DOF moving platform as a base for a car simulator Bagus Made Arthaya; Raymond Christian; Tua Agustinus Tamba; Dilek Bilgin Tükel
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.48-59

Abstract

The study starts by modeling a simple 2-DOF (degrees of freedom) moving platform that employs two actuators to provide two kinds of rotational motion on the moving platform and each motion is driven by an electrical motor. A preliminary study to better understand motion generation is conducted by deriving a mathematical model of the platform. Based on this model, the relationship between the rotations of the two driving motors and the pitch and roll movements of the platform is determined. The range of movements must be limited both in the pitch and roll planes to a certain maximum and minimum values of tilting angles. This preliminary design of the platform is introduced to demonstrate motions that might be experienced by the user in roll and pitch directions. The motion generated has fulfilled the constraint with respect to the vestibular system. Results of experimental works show that the first motor angle between -26° and 27° is suitable for the roll plane; meanwhile, the angles range of -52° and 54° for the second motor is suitable for the pitch plane. Furthermore, some simple experiments were conducted to examine the correctness of the model through the comparison between testing results obtained from simulation and experimental work. In the reported results, the moving platform was set to some initial poses and was driven to the home position and the recording showed acceptable results. This moving platform can later be used for more comprehensive experiments, i.e., vehicle dynamic testing, driving training purposes, and human factor analyses.
Design and CFD simulation of guide vane for multistage Savonius wind turbine Devin, Dionisius; Halim, Levin; Arthaya, Bagus Made; Chandra, Jonathan
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.186-197

Abstract

This study proposes improving the performance of a fixed-axis multistage Savonius wind turbine by integrating a sixbladed guide vane. Guide vanes aim to direct the incoming wind towards the blades of the Savonius wind turbine so that it can increase the performance value of the turbine itself. There are two methods, the first method is computational fluid dynamics (CFD) simulation to evaluate the best performance guide vane angle variations. The second method is implementing real conditions using 3 m/s until 4.2 m/s wind speed. The implementation of the guide vane to the wind turbine will consider four (4) variants of angles (0°, 20°, 40°, and 60°). The purpose of testing with four kinds of guide vane angles is to find out which guide vane angle can provide the best results among other guide vane angles. This research proposed the initial design of the guide vane addition to the multistage Savonius wind turbine with a fixed rotary axis. From the CFD simulation, the implementation of a guide vane can improve the performance of the multistage Savonius wind turbine with a fixed rotary axis. On the other hand, for the proposed initial design in this research, the 20° angle of guide vane gives the best result compared to the 0°, 40°, 60°, and without guide vane.