Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Civil Engineering Journal

Analysis of Tetrachiral Sandwich Structures at High-Velocity Impact: Influence of the Applied Material and Projectile Core Geometry Maulana, Sultan; Prabowo, Aditya Rio; Wibowo, Wibowo; Do, Quang Thang; Muttaqie, Teguh; Muhayat, Nurul; Fitri, Siti Nurlita
Civil Engineering Journal Vol 10, No 10 (2024): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-10-017

Abstract

This research involved ballistic impact analysis on a tetrachiral sandwich structure in which the shapes of the circular nodes in the tetrachiral core are modified into polygonal shapes, namely a square, hexagon, and octagon. The objectives of this study were to observe the effect of a modified sandwich tetrachiral structure core, investigate the effect of the projectile geometry, and calculate the material performance of the structure. This research was conducted using numerical analysis utilizing the finite element method. The simulation methodology was validated through a benchmarking study, the results of which showed an error below 6%. The findings show that the material with the best performance was Armox 500T, at 5033 J. The most difficult projectile to withstand was conical, followed by ogive, hemispherical, and blunt. The results of the core modification on the tetrachiral sandwich structure show that the octagonal core had better energy absorption, by 2.8%, compared to the circular core. Modifying the node geometry in the tetrachiral core and then analyzing it with stress and strain contours are the novel aspects of this research. Doi: 10.28991/CEJ-2024-010-10-017 Full Text: PDF
Glow-Wire Analysis of Polypropylene Blends for Mechanical and Marine Engineering Applications Firdaus, Himma; Supono, Ihsan; Pratama, Anandito Adam; Istanto, Iwan; Prabowo, Aditya Rio; Kusnandar, Nanang; Kasiyanto, Iput; Wijaya, Rahman; Lailiyah, Qudsiyyatul; Budiana, Eko Prasetya; Yaningsih, Indri; Akbar, Hammar Ilham; Imanullah, Fahmi
Civil Engineering Journal Vol. 11 No. 7 (2025): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-07-018

Abstract

Polymer materials are widely used due to their versatility; however, their vulnerability to fire is a significant concern, especially under electrical influences on engineered mechanical designs and marine structure applications. This study examines the fire resistance of a polypropylene (PP) blend using Glow-Wire Flammability Index (GWFI) and Glow-Wire Ignition Temperature (GWIT) tests. While previous research typically relies on flame-retardants to address flammability, this work proposes using a simple 1:1 weight ratio blend of two distinct PP types. This specific PP blend was selected to provide balanced material properties and improved processing consistency. The results from glow-wire tests were compared with previous findings to evaluate flammability performance. Our findings reveal that although the PP blend offers enhanced fire resistance compared to neat PP, it remains inferior to PP-containing flame-retardant additives. The outcomes suggest that this blended PP may be suitable for applications where mechanical properties, cost-effectiveness, and recyclability precede fire resistance, such as engineered automotive interiors, mechanical design of marine transportation, and low-risk electrical components in engineering infrastructure. This initial research contributes valuable insights into the fire behavior of PP blends. Moreover, it establishes a foundation for future investigations into polymer fire resistance, encouraging additional glow-wire testing on other polymer systems.