Claim Missing Document
Check
Articles

Optimasi Deteksi Gerak Bahasa Isyarat dan Ekpresi Wajah Real Time Dengan Metode Random Forest Mulyana, Dadang Iskandar; Rasiban; Sutisna; Banase, Samuel Figo
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 9 No 1 (2025): JANUARI-MARET 2025
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v9i1.3188

Abstract

Sign language is the primary means of communication for deaf individuals, one of the alternative languages used by people with disabilities, and it has evolved from the deaf community. Sign language has many variations, making it something unfamiliar and difficult to interpret for some hearing or uninitiated people. This research aims to develop a real-time sign language motion and facial expression detection system using the Random Forest method. The main challenge in this detection is the complexity and variation of the movements and facial expressions. In this study, MediaPipe is used to extract features from video input, which are then analyzed using the Random Forest algorithm for classification. In this research, the model's evaluation results use a confusion matrix with testing scenarios based on the division of training and testing data. From the model evaluation results, an accuracy of 99% was achieved. This research is expected to help deaf individuals communicate with hearing people, thereby reducing social gaps.
Comparison of Single Exponential Smoothing and Double Moving Average Algorithms to Forecast Beef Production Tundo; Rachmat Hidayat Insani; Rasiban; Untung Suropati
IJID (International Journal on Informatics for Development) Vol. 13 No. 1 (2024): IJID June
Publisher : Faculty of Science and Technology, UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/ijid.2024.4663

Abstract

Beef is considered a high-value commodity as it is an important source of protein. Interest in beef continues to rise. Beef production has risen sharply in the past decade, but declined by 7,240.68 tons in 2020 amid coronavirus lockdowns. After that, in 2021, production reached 16,381.81 tons and continued to increase in 2022 and 2023. A precise method is required to forecast beef production. One way to predict beef production in Jakarta is using the Single Exponential Smoothing and Double Moving Average methods. The two algorithms are compared to get the lowest error rate. The methodology used in this research is the SEMMA (Sample, Explore, Modify, Model, and Assess) methodology. According to SAS Institute Inc., there are five stages in developing a system using the SEMMA methodology. After analyzing using MAPE, it is found that the algorithm with the smallest error value is the Single Exponential Smoothing algorithm with a percentage in the monthly period of 16% while for the annual period, it is 27% compared to other algorithms. The forecasting is quite accurate because the MAPE value for each algorithm used has an error of less than 31%.
Klasifikasi Tinggi Badan Manusia Menggunakan Metode Mask R-CNN Mulyana, Dadang Iskandar; Adrianto, Sopan; Sutisna, Sutisna; Rasiban; Wahyudi, Ahmad Arif
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 6 No. 1 (2025): Januari
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Indonesia Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jimik.v6i1.1189

Abstract

The rapid development of the era, of course, becomes a benchmark for an agency to carry out transformation in the field of technology. an agency is expected to be able to implement a system that can provide convenience for many people who are struggling in the field, researchers take the example of a football academic institution. of course the selection to enter the football academic through complicated stages, prospective participants or students must be able to meet various requirements, one of which is height measurement. currently, the selection of height for prospective students is still carried out conventionally by utilizing measuring instruments. this is also the background to this research, in its implementation the researcher used python with the Mask-RCNN method, the conclusion obtained the system is able to detect objects with an accuracy of up to 80%.
The Influence of Competency, SOP, and Information Technology on Employee Performance in Using the Ideaprocs Application in BUMD Rizal, Saepul; Ramly, Amir Tengku; Firdaus, M. Aziz; Sutisna, Nandang; Rasiban, Rasiban
Indonesian Interdisciplinary Journal of Sharia Economics (IIJSE) Vol 8 No 1 (2025): Sharia Economics
Publisher : Sharia Economics Department Universitas KH. Abdul Chalim, Mojokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31538/iijse.v8i1.5655

Abstract

Human resources (HR) are very much needed in this increasingly advanced modern era, employees play an important role in running the system in the company which includes the company's vision, mission, and goals. HR also plans and acts actively in all Company functions related to technological progress and advancement. The purpose of this study is to analyze "The Effect of Competence, SOP, and Information Technology on Employee Performance in Using the IdeaProcs Application in BUMD". The research method used is a quantitative research method using a purposive technique as a method of determining the sample based on certain considerations to determine a sample of 61 employees and distribute questionnaires using Google form and analyze using number processing software. The results of the study based on the results of the analysis using number processing software that the significance value is 0.000 <0.05 and the calculated F value is 46.502> F table 2.77, so it can be concluded that there is a significant influence of the Competence variables (X1), SOP (X2) and Information Technology (X3) simultaneously on Employee Performance (Y) of 71.0%.
Media Pembelajaran Interaktif Berbasis Multimedia Menggunakan Adobe Animate Untuk TK Permata Hati Amalia, Ghina; Aulia, Mutia Dwi; Rahmah, Andini; Rasiban, Rasiban
INTECOMS: Journal of Information Technology and Computer Science Vol 8 No 2 (2025): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v8i2.14519

Abstract

Pendidikan anak usia dini memiliki peran penting dalam membentuk dasar perkembangan kognitif, afektif, dan psikomotor anak. Namun, metode pembelajaran tradisional sering kali kurang efektif dalam menarik perhatian anak-anak, sehingga diperlukan media pembelajaran yang lebih interaktif dan inovatif. Penelitian ini bertujuan untuk mengembangkan media pembelajaran interaktif berbasis multimedia menggunakan Adobe Animate untuk mendukung proses belajar-mengajar di TK Permata Hati. Media pembelajaran ini dirancang dengan fitur interaktif, animasi, suara, serta permainan edukatif yang dapat meningkatkan minat dan pemahaman anak-anak terhadap materi pembelajaran. Metode penelitian yang digunakan meliputi observasi, studi literatur, dan pendekatan prototyping dalam pengembangan media. Pengujian dilakukan melalui tiga tahap, yaitu pengujian fungsionalitas, kelayakan, dan efektivitas. Hasil pengujian menunjukkan bahwa media pembelajaran interaktif berbasis Adobe Animate dapat meningkatkan keterlibatan siswa, memudahkan guru dalam menyampaikan materi, serta membantu anak-anak memahami konsep dengan cara yang lebih menarik dan menyenangkan. Dengan demikian, pengembangan media ini dapat menjadi solusi inovatif dalam meningkatkan kualitas pembelajaran di tingkat pendidikan anak usia dini.
Implementasi Keamanan Absensi Digital Menggunakan Algoritma Kriptografi AES Mode CBC Wahab, Adnan; Rasiban
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 6 No. 2 (2025): Mei
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Indonesia Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63447/jimik.v6i2.1347

Abstract

This article discusses the Marketing Public Relations strategy of the Bandar Lampung City Tourism Office in increasing Bandar Lampung City Tourist Visits because the number of domestic tourists experienced an insignificant increase of 4.05% and foreign tourists experienced a decrease of 2.15%. This condition makes the Bandar Lampung City Tourism Office as the implementing element of regional autonomy have responsibility for tourism, one of which is visiting tourists from Bandar Lampung City. This research uses the analysis of Philip Kotler and Kevin Lane Keller's Marketing Public Relations strategy theory. The qualitative analysis method was used to achieve the research objectives, namely the Marketing Public Relations strategy of the Bandar Lampung City Tourism Office. Findings in research by the Bandar Lampung City Tourism Office in increasing tourist interest using 6 Marketing Public Relations strategies such as publications, events, news, speeches, social activities and identity media.
Sistem E-Voting Berbasis Web Sebagai Inovasi Dalam Proses Pemilihan Ketua RT 01 RW13 Malaka Jaya Rasiban, Rasiban; Arpinda, Arpinda; Susanto, Hermawan; Adnan, Kemal
INTECOMS: Journal of Information Technology and Computer Science Vol. 8 No. 5 (2025): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/3epdg417

Abstract

Pemilihan Ketua RT merupakan aktivitas penting dalam pengelolaan masyarakat, namun metode tradisional menggunakan kertas suara sering menghadapi kendala efisiensi, transparansi, dan partisipasi warga. Untuk mengatasi tantangan ini, kegiatan pengabdian kepada masyarakat bertujuan mengembangkan sistem e-voting berbasis web menggunakan framework Laravel dan PHPMyAdmin sebagai sistem manajemen basis data. Sistem ini dirancang untuk meningkatkan efisiensi, keandalan, dan transparansi dalam pemilihan Ketua RT 01 RW 13 Malaka Jaya. Metode pelaksanaan kegiatan melibatkan pendekatan rekayasa perangkat lunak dengan metode System Development Life Cycle (SDLC), yang mencakup tahapan analisis kebutuhan, perancangan sistem, implementasi, pengujian, dan evaluasi. Tahap analisis kebutuhan dilakukan melalui wawancara dengan warga dan pengurus RT untuk memastikan sistem memenuhi kebutuhan teknis dan fungsional. Perancangan sistem menggunakan Laravel sebagai backend, Blade Template Engine untuk frontend, dan MySQL melalui PHPMyAdmin untuk pengelolaan basis data. Implementasi teknologi melibatkan HTML5, CSS3, JavaScript, serta enkripsi bcrypt dan SSL untuk keamanan data. Pengujian dilakukan menggunakan metode black-box testing, melibatkan 50 warga sebagai simulasi. Hasil kegiatan menunjukkan bahwa sistem e-voting berbasis Laravel dan PHPMyAdmin mampu mempercepat proses pemungutan dan perhitungan suara, meningkatkan partisipasi warga hingga 30%, serta memberikan keamanan data yang lebih baik dibandingkan metode tradisional. Sistem ini terbukti menjadi solusi yang efisien, aman, dan transparan dalam pemilihan Ketua RT, meningkatkan kepercayaan warga terhadap proses pemilu. Studi kasus ini memberikan kontribusi signifikan dalam mendorong adopsi teknologi digital dalam tata kelola masyarakat. Kata Kunci: Sistem, E-Voting, Inovasi, Pemilihan Ketua RT RW, Web-Based
Implementation of Automatic Chicken Coop Temperature Controller Using DHT11 Sensor and Servo Motor Mukminin, Mukminin; Rasiban
Journal Innovations Computer Science Vol. 4 No. 2 (2025): November
Publisher : Yayasan Kawanad

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56347/jics.v4i2.363

Abstract

This study presents the design, development, and evaluation of an automatic temperature control system for broiler chicken coops using NodeMCU and DHT11 sensors integrated within an Internet of Things (IoT) framework. The system was designed to maintain coop temperature stability automatically, minimizing manual intervention and optimizing environmental conditions for broiler productivity. Using a Research and Development (R&D) approach, the system was constructed with hardware components including NodeMCU ESP8266, DHT11 sensor, servo motor, relay, lamp, and cooling fan, while the software utilized Arduino IDE, Python, and Telegram Bot API for real-time monitoring. The seven-day experimental testing, with thirty readings per day, demonstrated that the system maintained an average temperature of 27.6°C (±0.8°C), achieving 98.5% accuracy compared to manual thermometers, with an average error of 0.65%. The actuators exhibited an average response time of 1.8 seconds, ensuring quick adaptation to environmental changes and preventing heat stress in broilers. The automation reduced manual monitoring time by 80% and inspection frequency by 83%, while lowering energy consumption by approximately 40% through temperature-based device activation. These results confirm that low-cost IoT automation enhances environmental stability, animal welfare, and operational efficiency, aligning with the global trend toward precision livestock farming. Future improvements should focus on integrating multi-node systems, adaptive control algorithms, and humidity regulation to expand scalability, reliability, and sustainability in poultry management.
Implementasi Regresi Linear dan Single Exponential Smoothing Dalam Prediksi Harga Saham ANTM Paidi, Imam; Tundo, Tundo; Rasiban, Rasiban; Suropati, Untung
TEKNOKOM Vol. 7 No. 2 (2024): TEKNOKOM
Publisher : Department of Computer Engineering, Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/teknokom.v7i2.222

Abstract

This study focuses on using linear regression and single exponential smoothing (SES) models to predict the share price of PT Aneka Tambang Tbk (ANTM). Data from Yahoo! Finance covering the period from 2005 to 2023 is used. The linear regression model establishes a relationship between the current and previous stock prices, while the SES model smoothes out fluctuations and captures shortterm trends. The findings reveal that both models are highly accurate in predicting ANTM stock prices. However, the SES model is less consistent in capturing shortterm trends, suggesting its effectiveness lies in capturing seasonal and short-term trends in the ANTM stock price data. This research is significant as it contributes to the development of accurate and reliable stock price prediction models, which can assist investors and players in the capital market in making informed investment decisions. The results also provide a foundation for future research on applying more complex and sophisticated forecasting models for stock price prediction.
Penerapan Data Mining untuk Prediksi Kepuasan Pelanggan UKM Warung Kopi Menggunakan Metode Naive Bayes Tanjung, Cici Yolanda; Rasiban, Rasiban
J-CEKI : Jurnal Cendekia Ilmiah Vol. 4 No. 6: Oktober 2025
Publisher : CV. ULIL ALBAB CORP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/jceki.v4i6.11296

Abstract

Kepuasan pelanggan merupakan faktor krusial dalam menjaga keberlanjutan bisnis, terutama bagi Usaha Kecil dan Menengah (UKM) seperti warung kopi yang bergantung pada loyalitas pelanggan. Namun, banyak UKM masih menggunakan pendekatan manual dalam menganalisis survei, yang kurang efektif dalam menghasilkan informasi prediktif. Penelitian ini bertujuan untuk mengembangkan model prediksi kepuasan pelanggan menggunakan algoritma Naive Bayes, dengan studi kasus pada sebuah warung kopi di Taman Burung Waduk Pluit, Jakarta Utara. Data dikumpulkan melalui kuesioner yang mencakup lima aspek: kualitas produk, layanan, suasana, harga, dan kebersihan. Algoritma Naive Bayes dipilih karena efisiensinya dalam pemrosesan data dan kemampuannya menghasilkan klasifikasi yang akurat. Kinerja model dibandingkan dengan algoritma Decision Tree dan Regresi Logistik. Hasil menunjukkan bahwa model Naive Bayes mencapai akurasi sebesar 96,05%, serta berhasil mengidentifikasi variabel yang paling berpengaruh terhadap kepuasan pelanggan. Temuan ini memberikan kontribusi penting dalam penerapan pengambilan keputusan berbasis data di sektor UKM, khususnya dalam meningkatkan kualitas layanan dan loyalitas pelanggan.
Co-Authors Ade Septiansyah Adnan, Kemal Agistia Yuliawati Amalia, Ghina Amir Tengku Ramly Arjun Fricco Arpinda, Arpinda Aryanti, Putri Gea Asep Maulana Aulia, Mutia Dwi Banase, Samuel Figo Beatrice Yrain Bening Sari Purnomo Bila, Septiyana Bimantoro, Dava Sevtiandra Boangmanalu, Raya Fitri Dadang Iskandar Mulyana` Evan Donaldo Febryan Bayu Pratama Feni Citra Dewi Firdaus, M. Aziz Hanif, Zuhdi Hermawan Susanto Hutagalung, Julinar Sari Ikha Novie Tri Lestari Imam Muftadi Julinar Sari Hutagalung Kurniawan Setyo Nugroho Megawati - Megawati Megawati Miftahul Jannah Ahyana Puteri Kharisha Muhammad Alfin Najib Muhammad Fakhri Pratama Muhammad Ilham Fadillah Muhammad Jardine Ramaddhani Mukminin, Mukminin Najib, Muhammad Alfin Nugraha, Pramudya Nunung Parawati Paidi, Imam Pradita, Anggi Puteri Kharisha, Miftahul Jannah Ahyana Putri Amira Sumitro PUTRI WULANDARI Rachmat Hidayat Insani Radikto Radikto Rahmah, Andini Raya Fitri Boangmanalu Rizal, Saepul Rizki Ananda Pratama Rudi Tri Jaya S Sutisna Samuel Praja Raymond Maruli Saputra, Hendra Ekky Sarimole, Frencis Matheos Sartika Mala Senika, Anis Septi Hasanah Setya Permana Sutisna SOPAN ADRIANTO Sri Lestari Sri Lestari Sugeng Riyadi Sumabrata, Raden Muhammad Jachfitrah Ardhi Suropati, Untung Sutisna Sutisna Sutisna Sutisna, Nandang Tanjung, Cici Yolanda Tri Agus Setiawan Tri Wahyudi Tri Wahyudi Tri Wahyudi Tri Wahyuni Triwahyudi, Triwahyudi Tundo, Tundo Untung Suropati Veren Nita Permatasari Wahab, Adnan Wahyu Saputro Wahyudi, Ahmad Arif Yansen Yansen Yuliansyah, Ahmad Fauzan Yusuf Pascal Ramadhan