Claim Missing Document
Check
Articles

Found 7 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Donor Segmentation Analysis Using the RFM Model and K-Means Clustering to Optimize Fundraising Strategies ., Rezki; Lapatta, Nouval Trezandy; Ardiansyah, Rizka; ., Wirdayanti; Angreni, Dwi Shinta
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8464

Abstract

This study aims to segment donors using the Recency, Frequency, Monetary (RFM) model and the K-Means algorithm to optimize fundraising strategies. The RFM model is used to measure donor engagement through three dimensions: Recency (the last time a donation was made), Frequency (the frequency of donations), and Monetary (the amount of donations). By utilizing RFM scores, donors are then grouped using the K-means algorithm to generate more specific donor segments. This study was conducted using donation data from a non-profit organization, focusing on strategies to improve donor loyalty and donation frequency. The segmentation results identified several key segments, including Loyal Donors, New Donors, Potential Donors, and Low-Priority Donors. Each segment exhibits different donation behavior characteristics and requires a different strategic approach. The implementation of these segmentation results is expected to help the organization design more effective communication strategies and donation programs, as well as improve donor retention and lifetime value. Additionally, this study identifies the potential for enhancing the analytical model for broader applications in the future. This research contributes to non-profit organizations by offering a more efficient approach to managing donor relationships.
Analysis of the Use of MTCNN and Landmark Technology to Improve the Accuracy of Facial Recognition on Official Documents Chandra, Ferri Rama; Ngemba, Hajra Rasmita; Hamid, Odai Amer; Lapatta, Nouval Trezandy; Hendra, Syaiful; Nugraha, Deny Wiria; Syahrullah, Syahrullah
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8814

Abstract

A face recognition system consists of two stages: face detection and face recognition. Detection of features such as eyes and mouth is important in facial image processing, especially for official documents such as identity cards. To ensure identification accuracy, this research applies facial landmark extraction technology and MTCNN (Multi-Task Cascaded Convolutional Neural Network). The purpose of this research is to evaluate the accuracy of MTCNN in detecting facial features at the Department of Population and Civil Registration (dukcapil) Palu City, using facial landmarks and waterfall methods as an application development methodology. The evaluation results show that MTCNN has high face recognition accuracy and good positioning ability regardless of what GPU in use as long have right CPU and System Operation. In comparison, the Viola-Jones algorithm is effective for high-speed applications, while SSD offers balanced performance with GPU device requirements for optimal performance. While MTCNN proved to be effective, challenges still exist, such as false positives and false negatives, especially in poor lighting conditions and extreme poses. Image and camera quality, including resolution and facial expression, also affects detection accuracy. These findings suggest that the application of MTCNN can improve face recognition accuracy for official documents, although it requires addressing existing challenges. With this technology, it is expected that errors in facial recognition can be minimized, resulting in more reliable data that meets the standards for issuing identity documents. This research contributes to the development of a more accurate and efficient face recognition system for personal identification applications.
Optimization of Urban Waste Collection Routes Using the Held-Karp Algorithm in a Web and Mobile-Based System Arsita, Tiara Juli; Lapatta, Nouval Trezandy; Joefri, Yuri Yudhaswana; Angreni, Dwi Shinta; Pratama, Septiano Anggun
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8832

Abstract

In 2023, the Environmental Agency of Palu City recorded a total waste production of 97,492 tons, of which 10.4% was plastic waste. The Palu City Government operates a fleet of garbage trucks on a predetermined collection schedule. However, garbage bins frequently overflow before their scheduled pickup, resulting in extended waste accumulation and inefficiency. This study proposes a web and mobile-based system to enhance waste management by integrating bin condition reporting and shortest route calculation for collecting full bins. The Held-Karp algorithm is utilized to address the Travelling Salesman Problem (TSP) for determining optimal collection routes. The system was developed using Golang, Flutter, ReactJS, and a MySQL database. API functionality was validated using Postman, and overall system functionality was tested using the black-box method. A case study involving 8 test points (1 starting point, 10 waste collection points, and 1 endpoint) demonstrated that the proposed system reduces travel time by up to 21.74%, costs by 22.29%, fuel consumption by 21.16%, and distance traveled by 21.16% compared to conventional methods. These results highlight the potential of the system to significantly optimize waste collection operations and support sustainable urban waste management practices.
Optimization of Inventory Management with QR Code Integration and Sequential Search Algorithm: A Case Study in a Regional Revenue Office Fajar, Moh; Azhar, Ryfial; Anshori, Yusuf; Laila, Rahma; ., Rinianty; Lapatta, Nouval Trezandy
Journal of Applied Informatics and Computing Vol. 9 No. 2 (2025): April 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i2.8919

Abstract

Inventory management at a government office was previously conducted manually, leading to issues such as data inaccuracies, delays in item searches, and low work efficiency. This study develops a web-based inventory management system integrated with QR Code technology and a sequential search algorithm to address these challenges. The system was developed using the prototyping method, with iterative design based on user feedback until the final version met the office's operational needs. Key features of the system include digital inventory recording, item tracking using QR Codes, and real-time information access through a web-based interface. The system was tested in two stages: simulation and direct implementation in a real-world environment, involving 10 respondents to evaluate effectiveness and usability. The test results showed a 95% improvement in data recording accuracy, a 60% reduction in item search time, and an average user satisfaction score of 77.25 based on the System Usability Scale (SUS). This research successfully improved inventory management efficiency and demonstrated the system’s potential for adoption by other similar organizations, with modular adjustments tailored to their needs.
Comparative Performance Analysis of GRPC and Rest API Under Various Traffic Conditions and Data Sizes Using a Quantitative Approach Ain, Moch. Zukhruf; Rizka Ardiansyah; Septiano Anggun Pratama; Muhammad Akbar; Nouval Trezandy Lapatta
Journal of Applied Informatics and Computing Vol. 9 No. 2 (2025): April 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i2.9276

Abstract

Web 3.0 presents challenges in efficient data exchange, especially in decentralized systems. REST API (HTTP/1.1) remains widely used due to its broad compatibility but has communication inefficiencies, while gRPC (HTTP/2) offers better performance with multiplexing and Protocol Buffers. This study compares REST API and gRPC under various traffic conditions and data sizes using Apache JMeter and Wireshark, measuring throughput, response time, latency, and data transfer efficiency. Results show that REST API has higher throughput in low-traffic scenarios (995 vs. 29.5 req/min) and faster GET response time (3 ms vs. 20 ms), while gRPC excels in large data transfers (276.34 KB/s vs. 134.1 KB/s) and stable latency (0.147 ms). However, ANOVA analysis (p > 0.05) indicates no statistically significant difference. REST API is ideal for standard web applications, while gRPC is suited for microservices and real-time systems.
Utilization of EfficientNet-B0 to Identify Oncomelania Hupensis Lindoensis as a Schistosomiasis Host Lamadjido, Moh. Raihan Dirga Putra; Laila, Rahmah; Pusadan, Mohammad Yazdi; Yudhaswana, Yuri; Lapatta, Nouval Trezandy; Ngemba, Hajra Rasmita
Journal of Applied Informatics and Computing Vol. 9 No. 3 (2025): June 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i3.9058

Abstract

Schistosomiasis caused by the Schistosoma japonicum worm is a significant health problem in Indonesia, especially in endemic areas such as the Napu Plateau and Bada Plateau. The main problem in controlling this disease is the difficulty in rapid and accurate identification of Oncomelania hupensis lindoensis snails as intermediate hosts of the parasite. This research aims to develop an artificial intelligence-based system that can efficiently identify the snail species. The stages of this research include collecting snail image data from the Central Sulawesi Provincial Health Office, consisting of 2100 images covering seven snail species, then processed through preprocessing and augmentation stages. The model applied was EfficientNet-B0. The results showed that the EfficientNet-B0 model achieved 98.80% training accuracy and 98.33% validation accuracy. Confusion matrix testing showed good performance, with an accuracy of 98% and for the species Oncomelania hupensis lindoensis had a recall of 93%, precision of 100%, F1-score of 97%, and the resulting AUC value of 99.7%. This research successfully developed an efficient identification system, which is expected to help health surveillance personnel in accelerating the identification process of schistosomiasis intermediate hosts.
Implementation of ResNet-50-Based Convolutional Neural Network For Mobile Skin Cancer Classification Asriani, Asriani; Lapatta, Nouval Trezandy; Nugraha, Deny Wiria; Amriana, Amriana; Wirdayanti, Wirdayanti
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9696

Abstract

The skin is one of the most important parts of the human body, serving vital functions such as protecting internal organs from injury, shielding against direct bacterial exposure, regulating body temperature, and more. However, the skin is also susceptible to diseases, one of which is skin cancer. Skin cancer can be extremely dangerous if not treated promptly, as it can lead to death. Therefore, early detection is crucial. This study proposes a technology-based solution by classifying skin cancer using a convolutional neural network (CNN) with a ResNet50 architecture implemented into a mobile application via a REST API using Flask. The HAM10000 dataset, consisting of 10,015 skin lesion images across seven classes, was used for model training. Various testing scenarios were conducted to determine the optimal parameter combination. The best results were achieved with an accuracy of 83.84%, precision and recall of 83%, and an F1-score of 83%, using a training data configuration of 70%, dropout of 0.4, and a batch size of 64. The model implemented in this Android application can perform early detection of skin cancer quickly, practically, and easily accessible to the general public, though healthcare professionals must still supervise it. However, although this model can assist users in making early predictions, the prediction results from this model are only a tool for early detection and do not replace clinical diagnosis by professional medical personnel.2) Figure 8 shows the display for taking pictures through the gallery or camera. Users can choose the image they want to upload from the gallery or the camera to be analysed and predicted by the model.