p-Index From 2021 - 2026
7.018
P-Index
This Author published in this journals
All Journal ComEngApp : Computer Engineering and Applications Journal Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA JIEET (Journal of Information Engineering and Educational Technology) Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Sebatik Jurnal Teknoinfo ICETIA Jurnal Nasional Komputasi dan Teknologi Informasi IJISTECH (International Journal Of Information System & Technology) JURIKOM (Jurnal Riset Komputer) Informatika : Jurnal Informatika, Manajemen dan Komputer Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi Jurnal Informatika Ekonomi Bisnis Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika IJISTECH Information System Journal (INFOS) Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer JUSTIN (Jurnal Sistem dan Teknologi Informasi) Bulletin of Information Technology (BIT) Knowbase : International Journal of Knowledge in Database Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Sains dan Informatika : Research of Science and Informatic Jurnal Informatika Ekonomi Bisnis
Claim Missing Document
Check
Articles

Klasifikasi Retardasi Mental Anak Menggunakan Backpropagation Momentum Novi Yanti; Yeni Fariati; Elvia Budianita; Suwanto Sanjaya; Megawati Megawati
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2020: SNTIKI 12
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Terjadinya kendala keterampilan selama masa perkembangan anak, ditandai dengan adanya gangguan perkembangan jiwa yang tidak lengkap atau yang terhenti, hal ini dapat mempengaruhi tingkat emosional dan kecerdasan anak baik sebagian atau keseluruhan yang meliputi kemampuan kognitif, bahasa, motorik, dan sosial. Ciri ini merupakan gangguan retardasi mental pada anak sebelum berusia 18 tahun. Klasifikasi retardasi mental terdiri atas ringan, sedang, berat, dan sangat berat. Klasifikasi menggunakan 17 variabel masukan menerapkan metode backpropagation momentum dengan jumlah data yang digunakan 127 data. Parameter target error 0.001, maksimum epoch 1000, learning rate 0.01, 0.03, 0.05, 0.07, 0.4, jumlah neuron hidden layer 17, momentum 0.1, 0.3, 0.6, 0.8, 0.9 dengan perbandingan data 70:30, 80:20, 90:10. Hasil pengujian data 90:10 dengan parameter learning rate 0.07 dan momentum 0.8 memperoleh nilai akurasi 100%. Sehingga dapat disimpulkan bahwa backpropagation momentum dapat melakukan klasifikasi gangguan retardasi mental dengan sangat baik.
Klasifikasi Diabetik Retinopati Menggunakan Wavelet Haar dan Backpropagation Neural Network Suwanto Sanjaya; Arif Mudi Priyatno; Febi Yanto; Iis Afrianty
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2018: SNTIKI 10
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (702.251 KB)

Abstract

Diabetik retinopati merupakan penyakit yang menyerang retina mata dan dapat menyebabkan kebutaan. Tingkat keparahan diabetik retinopati terbagi atas empat yaitu Normal, Diabetik Retinopati Non-proliferative (NPDR), Diabetik Retinopati Proliferative (PDR) dan Makula Endema (ME). Pada dasarnya diabetik retinopati dapat diamati menggunakan kamera fundus tetapi membutuhkan waktu yang cukup lama. Sehingga pada penelitian ini diterapkan ilmu pengolahan citra dan Jaringan Syaraf Tiruan sebagai cara lain untuk mengelompokkan penyakit diabetik retinopati. Wavelet Haar digunakan sebagai ekstraksi ciri citra retina mata dan Backpropagation Neural Network (BPNN) digunakan sebagai Metode klasifikasinya. Data yang digunakan bersumber dari messidor database. Jumlah data yang digunakan adalah sebanyak 612 citra (153 data setiap kelas). Berdasarkan hasil pengujian, akurasi tertinggi sebesar 56,25% dengan ukuran citra 2440 x 1448 piksel, haar level ke-4 serta persentase perbandingan data latih dan data uji 95%:5%, Learning rate 0,01. Berdasarkan hasil tersebut, algoritme wavelet haar kurang mampu mengenali ciri dari diabetik retinopati.
Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi Sarah Lasniari; Jasril Jasril; Suwanto Sanjaya; Febi Yanto; Muhammad Affandes
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 5, No 3 (2022): Juni 2022
Publisher : Program Studi Teknik Informatika, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v5i3.4424

Abstract

Abstrak - Kasus kecurangan pedagang mencampur daging sapi dengan daging babi masih terjadi hingga saat ini. Membedakan daging sapi dan babi dapat dilakukan dengan mengamati secara langsung satu persatu, tetapi hal ini dapat dilakukan oleh para ahli, Tetapi secara kasat mata masih sulit membedakannya. Perilaku pedagang seperti ini sangat merugikan konsumen khususnya pemeluk agama Islam karena berkaitan dengan makanan yang halal atau haram. Pada penelitain ini menggunakan metode Deep Learning untuk klasifikasi citra dengan Convolutional Neural Network (CNN) arsitektur ResNet-50. Jumlah data sebanyak 457 citra yang terbagi menjadi 3 kelas, yaitu daging babi, daging oplosan dan daging sapi. Setiap kelas memiliki ukuran gambar yang sama yaitu 300 x 300 pixel. Pembagian data menggunakan split data dengan perbandingan 70% data uji : 30% data uji, 80% data latih : 20% data uji, dan 90% data latih : 10% data uji. Hasil dari pengujian model dengan Confusion Matrix menunjukkan performa klasifikasi tertinggi dengan 100% accuracy, 100% precision, dan 100% recall, pada data citra asli dengan penggunaan batch size 32, 0.001 learning rate, epoch 75 dan split data 90% : 10%.Kata kunci: Convolutional Neural Network, Daging Babi dan Sapi, Deep Learning, Klasifikasi Citra, ResNet  Abstract - Traders mixing beef and pork are still committing fraud today. Although professionals can discern between beef and pork by watching them one by one, it is still impossible to do so with the naked eye. This kind of behavior is very detrimental to consumers, especially Muslims because it is related to halal or haram food. This research uses Deep Learning method to classify images with Convolutional Neural Network (CNN) ResNet-50 architecture. The number of data is 457 images which are divided into 3 classes, namely pork, mixed meat and beef. Each class has the same image size, which is 300 x 300 pixels. data distribution using split data with a comparison of 70% training data: 30% test data, 80% training data: 20% test data, and 90% training data: 10% test data. The results of model testing using the Confusion Matrix show the highest classification performance with 100% accuracy, 100% precision, and 100% recall, on the original image data using batch size 32, 0.001 learning rate, epoch 75 and split data 90%: 10%..Kata kunci: Convolutional Neural Networ, Deep Learning, Image Classification, Pork and Beef, ResNet
Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi Dodi Efendi; Jasril Jasril; Suwanto Sanjaya; Fadhilah Syafria; Elvia Budianita
JURIKOM (Jurnal Riset Komputer) Vol 9, No 3 (2022): Juni 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i3.4176

Abstract

Meat is one of the food ingredients needed by humans. The price of pork is cheaper than beef, which has led to the practice of mixing beef with pork for the purpose of making big profits. In plain view, the difference between beef and pork is not striking, so it is difficult for ordinary people to distinguish between them. In terms of color, pork is paler than beef. In terms of texture, beef is stiffer and tougher than pork. In terms of fiber, beef is clearer than pork, so we need a system that can identify the two types of meat. This study uses the Convolutional Neural Network (CNN) algorithm with the ResNet-50 architecture with 3 types of optimizers such as Stochastic Gradient Descent (SGD), Adam, and RMSprop. The dataset used for training first goes through 2 stages of preprocessing, namely cropping and resizing. The results of the study show that the SGD optimizer can outperform the Adam and RMSprop optimizers with 97.83% accuracy, 97% precision, 97% recall, and 97% f1 score with batch size 32, learning rate 0.01, and epoch 50.
Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan Ekstraksi Ciri dan Convolutional Neural Network Gusrifaris Yuda Alhafis; Jasril Jasril; Suwanto Sanjaya; Fadhilah Syafria; Elvia Budianita
JURIKOM (Jurnal Riset Komputer) Vol 9, No 3 (2022): Juni 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i3.4175

Abstract

Cases of mixing beef and pork are still happening today. The increasing demand for beef causes many traders to mix meat to gain more profit. Distinguishing beef and pork can be done by sight and smell, but still has weaknesses. This study uses Deep Learning method for image classification with Convolutional Neural Network architecture EfficientNet-B0. The amount of data is 3,000 images which are divided into 3 classes, beef, pork, and mixed meat. This study uses original image data and image data of Contrast Limited Adaptive Histogram Equalization. The data is divided by the ratio of training data and test data of 80:20. The results of testing the model with the confusion matrix show the highest classification performance with 95.17% accuracy, 92.72% precision, 95.5% recall, and 94.09% f1 score, in the original image data with the use of neurons in the first dense amounting to 256, 32 batch size, 0.01 learning rate, and Adam's optimizer
Implementasi Convolutional Neural Network Untuk Klasifikasi Daging Menggunakan Fitur Ekstraksi Tekstur dan Arsitektur AlexNet Amalia Hanifah Artya; Jasril Jasril; Suwanto Sanjaya; Fadhilah Syafria; Elvia Budianita
JURIKOM (Jurnal Riset Komputer) Vol 9, No 3 (2022): Juni 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i3.4177

Abstract

The demand for meat began to increase rapidly, causing drastic price changes and causing the existence of scammers to inflate the price of meat to get big profits by mixing beef and pork. Few consumers are aware of the mixing of meat, to distinguish between beef and pork can be seen in terms of color and texture, but this theory still has weaknesses. This research uses the Deep Learning method, namely Convolutional Neural Network with Local Binary Pattern texture extraction feature and AlexNet architecture for meat classification. The research conducted stated that the accuracy of the meat image classification can be measured using various parameters and optimizers. The highest accuracy results obtained from this study were 68.6% accuracy, 62% precision, 57.6% recall, and 59% f1-score using the Stochastic Gradient Descent (SGD) optimizer, 0.01 learning rate, 32 batch size, and 0.9 momentum. Compared to the original dataset, the accuracy of the LBP dataset type is still below the original dataset with the results obtained from the accuracy of the original dataset are 84.1% accuracy, 78.6% precision, 79% recall, and 79% f1-score using the RMSprop optimizer, 0 .0001 learning rate, 32 batch sizes, and momentum So it can be concluded that the AlexNet architecture by setting the existing parameter values can increase the accuracy value.
Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra Sarah Lasniari; Jasril Jasril; Suwanto Sanjaya; Febi Yanto; Muhammad Affandes
Jurnal Sistem Komputer dan Informatika (JSON) Vol 3, No 4 (2022): Juni 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v3i4.4167

Abstract

Beef is an example of an animal protein-rich food. The consumption of meat in Indonesia is increasing year after year, in tandem with the country's growing population. Many traders purposefully combine beef and pork in order to maximize profits. With the naked eye, it's difficult to tell the difference between pork and beef. In Muslim-majority countries, the assurance of halal meat is crucial. This study uses Deep Learning with the Convolutional Neural Network (CNN) method and ResNet-50 with data augmentation to classify images of beef and pork. The original meat picture databases contain 457 images, however following the data augmentation process, there are 2742 images in total, divided into three classes. The distribution of training and test data is 90 percent:10 percent in the comparison test scenario between the two original data schemes and supplemented data. With an average of 87.64 % accuracy, 87.59 % recall, and 90.90 % precision, the Confusion Matrix is the best classification performance model. There was no evidence of overfitting based on observations from the visualization of the training and testing process.
Penerapan Deep Learning Menggunakan VGG-16 untuk Klasifikasi Citra Glioma Annisa Putri; Benny Sukma Negara; Suwanto Sanjaya
Jurnal Sistem Komputer dan Informatika (JSON) Vol 3, No 4 (2022): Juni 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v3i4.4122

Abstract

One of the types of brain tumors in humans is glioma. Glioma is considered to be the most common type of primary brain tumor in adults. To determine the follow-up action that will be carried out by the doctor, the level of glioma needs to be known first. Glioma is divided into 3 grades. To be able to distinguish grades from gliomas, a classification process can be carried out using deep learning with CNN architecture. Glioma grade classification applies Histogram Equalization (HE) preprocessing. The training model uses CNN with the VGG-16 architecture. data using split data with a comparison of 70% training 30% testing, 80% training 20% testing, and 90% training 10% testing. The results of this study using original data have better results compared to data using HE preprocessing on batch size 16 testing and split data 90% training 10% testing.
Cryptocurrency Sentiment Classification Based on Comments On Facebook Using K-Nearest Neighbor Ramu Will Sandra; Yelfi Vitriani; Muhammad Affandes; Suwanto Sanjaya
IJISTECH (International Journal of Information System and Technology) Vol 6, No 2 (2022): August
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1168.805 KB) | DOI: 10.30645/ijistech.v6i2.237

Abstract

Cryptocurrencies continue to develop and have received world attention, price changes that occur every day are influenced by uncertain factors such as political problems and global economic problems. The author will explore the problems discussed by the public regarding positive and negative cryptocurrency comments on Facebook comments using the K-Nearest Neighbor method. This study uses 1000 data comments which are divided into 500 positive data and 500 negative data. The data was obtained manually by using the keyword "bitcoin price" on social media facebook. The results of the testing process using the confusion matrix get the highest accuracy at a comparison of 90: 10 by 62%, recall 70%, error rate 38% and precision 60,34% with k value of 11 and threshold 9.
Cryptocurrency Sentiment Classification Based on Comments On Facebook Using K-Nearest Neighbor Ramu Will Sandra; Yelfi Vitriani; Muhammad Affandes; Suwanto Sanjaya
IJISTECH (International Journal of Information System and Technology) Vol 6, No 2 (2022): August
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v6i2.237

Abstract

Cryptocurrencies continue to develop and have received world attention, price changes that occur every day are influenced by uncertain factors such as political problems and global economic problems. The author will explore the problems discussed by the public regarding positive and negative cryptocurrency comments on Facebook comments using the K-Nearest Neighbor method. This study uses 1000 data comments which are divided into 500 positive data and 500 negative data. The data was obtained manually by using the keyword "bitcoin price" on social media facebook. The results of the testing process using the confusion matrix get the highest accuracy at a comparison of 90: 10 by 62%, recall 70%, error rate 38% and precision 60,34% with k value of 11 and threshold 9.
Co-Authors Abdussalam Al Masykur Adrian Maulana Afiana Nabilla Zulfa Ahmad Fauzan Ahmad Paisal Ahmad, Rizmah Zakiah Nur Al Fiqri, M. Faiz Alwis Nazir Alwis Nazir Alwis Nazir Alwiz Nazir Amalia Hanifah Artya Annisa Putri Aqilah, M Alfandri Arif Mudi Priyatno Ariq At-Thariq Putra Aulia Ramadhani Cut Lira Kabaatun Nisa Darmila Deny Ardianto Dodi Efendi efni humairah Eka Pandu Cynthia, Eka Pandu Elin Haerani Elvia Budianita Erni Rouza, Erni Ersad Alfarsy Absar, Ersad Alfarsy Fadhilah Syafria Fadhilla Syafria Fakhrezi, Muhammad Dzaki Febi Yanto Felian Nabila Fitri Insani Fitri Insani Fitri Insani (Scopus ID: 57190404820) Fitri, Dina Deswara Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Hafez Almirza Harni, Yulia Hartini Hartini Iis Afrianty Iis Afrianty iis afrianty Iis Afrianty Ikhwanul Akhmad DLY Irman Hermadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Jasril Jasril Karina Julita Kurnia Rahman, Fikri Kurniawan, Saifur Yusuf Lestari Handayani Lestari Handayani Lestari Handayani Lia Anggraini Lola Oktavia M. Fadil Martias Masaugi, Fathan Fanrita Maulana Junihardi Mazdavilaya, T Kaisyarendika Megawati Megawati Morina Lisa Pura Muhammad Affandes Muhammad Fikry Muhammad Irfan Syah Muhammad Irsyad Muhammad Irsyad Nabyl Alfahrez Ramadhan Amril Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Negara, Benny Sukma Novi Yanti Novriyanto Novriyanto Novriyanto Pangestu, Yoga Pizaini Pizaini Puspa Melani Almahmuda Putri Ayuni, Desy Radili, Adi Rahma Shinta Rahmad Abdillah Rahmad Abdillah Ramu Will Sandra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Saputra, Nugroho Wahyu Sarah Lasniari Sarah Lasniari Shahira, Fayza Siska Kurnia Gusti siska kurnia gusti Siska Kurnia Gusti Sugandi, Hatami Karsa SURYA ADITYA GD Surya Agustian Syaputra, Muhammad Dwiky Ulfah Adzkia Vitriani, Yelfi Yani, Susmi Syahfrida Yelfi Vitriani Yeni Fariati Yusra Yusra, Yusra Yusril Hidayat