Claim Missing Document
Check
Articles

Found 13 Documents
Search

PENINGKATAN KINERJA PROSES ELEKTROKOAGULASI MELALUI AERASI UNTUK MENGURANGI PARAMETER MINYAK DAN LEMAK DARI INDUSTRI MINYAK KELAPA Ramadani, Tarikh Azis; Azzahro, Annisa; Setiawan, Adhi; Mayangsari, Novi Eka; Dermawan, Denny
Jukung (Jurnal Teknik Lingkungan) Vol 11, No 1 (2025)
Publisher : Program Studi Teknik Lingkungan Fakultas Teknik Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/jukung.v11i1.22193

Abstract

Pencemaran air merupakan masalah lingkungan yang sangat penting. Salah satu pencemar air adalah limbah minyak dan lemak dari industri minyak kelapa yang cenderung merusak lingkungan dan menurunkan kualitas hidup masyarakat. Pengolahan air limbah seperti elektrokoagulasi digunakan agar air limbah sesuai dengan peraturan dan menciptakan kehidupan yang berkelanjutan. Elektrokoagulasi digunakan untuk mengolah minyak dan lemak karena memiliki waktu proses yang singkat, memiliki efisiensi yang tinggi dan mudah dioperasikan. Penelitian ini mengevaluasi proses remediasi minyak dan lemak dalam reaktor elektrokoagulasi batch dengan berbagai kerapatan arus dan laju aerasi. Elektroda Al dan waktu kontak 30 menit digunakan dalam reaktor elektrokoagulasi. Minyak dan lemak dapat dihilangkan hingga 99.92% pada kondisi kerapatan arus 8.76 mA/cm2 dan laju aerasi 4.5 L/menit. Proses aerasi yang diterapkan pada proses elektrokoagulasi dipastikan dapat meningkatkan kinerja proses sebesar 13.22% bila dibandingkan dengan tanpa proses aerasi. Proses aerasi dapat memicu peningkatan mekanisme elektrokoagulasi melalui adsorpsi dan penjebakan oleh elektrokoagulan. Proses elektrokoagulasi dengan aerasi mencapai hasil yang meyakinkan meskipun kinerja sistem masih belum sesuai dengan peraturan yang berlaku.
Effect of Non-Thermal Plasma on Biochar Properties from Sugarcane Bagasse and Banana Peel Dermawan, Denny; Satriavi, Aulia Diva; Nurhidayati, Dyah Isna; Mujiyanti, Dwi Rasy; Novitrie, Nora Amelia; Mayangsari, Novi Eka; Setiawan, Adhi
Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan Vol 22, No 2 (2025): July 2025
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/presipitasi.v22i2.349-359

Abstract

Biochar produced from agricultural waste, such as sugarcane bagasse and banana peel, has gained significant attention owing to its potential environmental and industrial applications. This study aimed to enhance the physicochemical properties of biochar derived from these wastes using nonthermal plasma treatment. Biochar was produced via pyrolysis combined with non-thermal plasma treatment and then characterized to identify the differences. Characterization was performed using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and–Brunauer–Emmett Teller (Brunauer-Emmett-Teller) surface area analysis to evaluate changes in crystallinity, morphology, functional groups, and surface area. Nonthermal plasma treatment significantly altered the surface morphology of biochar, increasing its porosity and surface area. The BET surface area of sugarcane bagasse waste was 0.061 m²/g, which expanded to 87.50 m²/g after changing to biochar, whereas banana peel waste had a BET surface area of 0.007 m²/g, which increased to 427.2 m²/g after changed to biochar. The pyrolysis process on both biochars also reduced OH (hydroxyl) transmittance, as evidenced by FTIR analysis, which indicated water evaporation. Non-thermal plasma treatment substantially improved the physical and chemical properties of biochar compared to untreated biomass.
Eco-Friendly Cellular Lightweight Concrete Partition Walls Using Sandblasting Waste for Seismic Mitigation Cahyono, Luqman; Dermawan, Denny; Pratiwi, Wiwik Dwi; Widiana, Dika Rahayu; Utomo, Agung Prasetyo; Fahmi, M. Rizal; Rosalina, Amanda; Suroidah, Eva Nur; Carina, Annisa; Oktaviastuti, Blima
Rekayasa Sipil Vol. 20 No. 1 (2026): Rekayasa Sipil Vol. 20 No. 1
Publisher : Department of Civil Engineering, Faculty of Engineering, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.rekayasasipil.2026.020.01.10

Abstract

The increasing demand for efficient construction materials has driven the popularity of lightweight bricks in the last decade. On the other hand, ship repair activities generate sandblasting waste, amounting to 2.5–3 million tons per year, which contains heavy metals and corrosive residues, and is therefore categorized as B3 waste. This study aims to transform sandblasting waste into environmentally friendly partition walls that support earthquake and fire disaster mitigation by formulating lightweight bricks of the Cellular Lightweight Concrete (CLC) type through the modification of foam agents and the substitution of fine aggregates. Initial studies, conducted through interviews at one of the shipyards, revealed an average monthly generation of sandblasting waste of 12,100 kg. This study combines laboratory experiments and a literature review to examine material properties, including gradation, specific gravity, water absorption, and metal content (XRF–TCLP), as well as to evaluate compressive strength, density, and potential applications in earthquake disaster mitigation. The characterization results indicate that the sandblasting waste meets the gradation requirements specified in SNI 03-2834-2000 and passes physical tests according to SNI 03-1970-2008, with heavy metal content (Ba, Zn, Cu) below the threshold set in PP No. 22 of 2021. Lightweight bricks are made with a composition ratio of 1:1 cement and sandblasting waste, and variations in the foam agent range from 5% to 12.5%. The best formula, according to SNI 8640-2018, is obtained at a foam agent content of 5%, resulting in a compressive strength of 7.28 MPa and a density of 1,283.33 kg/m³, which is lighter than concrete blocks and red bricks. From an earthquake mitigation perspective, it was found that lighter material weight contributed to reducing inertial forces and loads on the structure, thereby enhancing resistance to initial collapse and facilitating ease of dismantling during post-earthquake evacuation. These findings indicate that sandblasting waste has the potential to be processed into environmentally friendly alternative construction materials that not only meet technical standards but also contribute to earthquake risk mitigation strategies.