This research aims to develop a nominal detection system for the Rupiah currency for the 2022 emission year using the Convolutional Neural Network (CNN) and Feedforward Neural Network (FNN) methods, especially in the context of applications for vending machines. This research explores the potential of computer vision technology to facilitate the introduction of Rupiah banknotes and contribute to the development of vending machines. The dataset used includes variations in lighting conditions, orientation, and position of banknotes, thus involving various augmentation and preprocessing processes. The model evaluation results include nominal detection accuracy in various conditions, considering the success of the system to support the performance of the vending machine. This research is expected to contribute to the development of more comprehensive technology and expand the application of CNN and FNN in the context of currency detection. In this research, the CNN method produced the best accuracy of 100% for testing in bright conditions, then in sufficient light conditions it produced an accuracy of 96.43%. Meanwhile, testing in dark conditions got quite low results, only 78.56%. Then the FNN method produces the same accuracy of 53.57% in bright light, sufficient light and low light conditions.