Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Brown’s Weighted Exponential Moving Average Implementation in Forex Forecasting Seng Hansun; Subanar Subanar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 3: September 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i3.5410

Abstract

In 2016, a time series forecasting technique which combined the weighting factor calculation formula found in weighted moving average with Brown’s double exponential smoothing procedures had been introduced. The technique is known as Brown’s weighted exponential moving average (B-WEMA), as a new variant of double exponential smoothing method which does the exponential filter processes twice. In this research, we will try to implement the new method to forecast some foreign exchange, or known as forex data, including EUR/USD, AUD/USD, GBP/USD, USD/JPY, and EUR/JPY data. The time series data forecasting results using B-WEMA then be compared with other conventional and hybrid moving average methods, such as weighted moving average (WMA), exponential moving average (EMA), and Brown’s double exponential smoothing (B-DES). The comparison results show that B-WEMA has a better accuracy level than other forecasting methods used in this research.
H-WEMA: A New Approach of Double Exponential Smoothing Method Seng Hansun; Subanar Subanar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 2: June 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i2.3096

Abstract

A popular smoothing technique commonly used in time series analysis is double exponential smoothing. Basically, it’s an improvement of simple exponential smoothing which does the exponential filter process twice. Many researchers had developed the technique, hence Brown’s double exponential smoothing and Holt’s double exponential smoothing. Here, we introduce a new approach of double exponential smoothing, called H-WEMA, which combines the calculation of weighting factor in weighted moving average with Holt’s double exponential smoothing method. The proposed method will then be tested on Jakarta Stock Exchange (JKSE) composite index data. The accuracy and robustness level of the proposed method will then be examined by using mean square error and mean absolute percentage error criteria, and be compared to other conventional methods.