Suharyana Suharyana
Physics Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Surakarta 57126, Indonesia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Optimalisasi Geometri Wedge pada Pesawat Teleterapi 60Co Putri, Ajeng Sarinda Yunia; Suharyana, Suharyana; Riyatun, Riyatun; Muhtarom, Muhtarom
Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2017
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (993.24 KB) | DOI: 10.20961/prosidingsnfa.v2i0.16352

Abstract

Abstract: In  RSUD Dr.  Moewardi available wedge angle of 15°, 30°, 45°, and 60°. This research simulates with Monte Carlo N-Particle eXtended Version (MCNPX) computer software to determine the geometry of the wedge that produces the isodose angle of 20°, which is hoped to be applied to therapy of organ tilt of 20 ° in some cases of cervical cancer. In simulation obtained the value of the wedge factor of isodose angle of 20° and distribution of dose rate. The simulated material of wedge is Lead-Antimony Alloy. Verification of the simulation result was done by measuring the wedge factor of angle of 30° and 60°, the simulation result was validated with result of measurement experiment on 60Co teletherapy in RSUD Dr. Moewardi Surakarta. The relative error between simulation and measurement experiment of wedge angle of 30° is 8.84% and angle of 60° is 4.35%. The relative error is small to convince the researcher to develop a simulation at an isodose angle of about 20°. From the simulation results obtained isodose angle 20.3° of Lead-Antimony Alloy material with geometry is length 16 cm, width 14.9 cm, thick 0.83 cm, the value of the angle α of 3.2°. Wedge factor of isodose angle of  20.3 ° is (0.68 ± 0.01). Wedge isodose angle of 20.3° if used in therapy in an organ tilt about 20 ° gives dose rate enough uniform. Abstrak :. Di RSUD Dr. Moewardi tersedia wedge untuk sudut 15°, 30°, 45°, dan 60°. Penelitian ini mensimulasikan dengan software computer Monte Carlo N-Particle eXtended Version (MCNPX) untuk menentukan geometri wedge yang menghasilkan sudut isodosis 20°, dimana diharapkan dapat diaplikasikan pada terapi organ dengan kemiringan 20° di beberapa kasus kanker serviks. Besaran yang diperoleh dari simulasi adalah nilai faktor transmisi wedge sudut isodosis 20° dan distribusi laju dosis serap penggunaan wedge tersebut. Bahan wedge yang disimulasikan adalah Lead-Antimony Alloy. Verifikasi hasil simulasi dilakukan dengan pengukuran faktor wedge pada sudut isodosis 30° dan 60°, hasil simulasi divalidasi dengan hasil pengukuran langsung pada pesawat teleterapi 60Co di RSUD Dr. Moewardi Surakarta. Kesalahan antara simulasi dan pengukuran langsung pada isodosis sudut 30° adalah 8,84 % dan pada sudut 60° adalah 4,35 %. Kesalahan relatif tersebut cukup kecil sehingga meyakinkan peneliti untuk menyusun simulasi pada sudut sekitar 20°. Dari hasil simulasi diperoleh isodosis sudut 20,3° dari bahan Lead-Antimony Alloy dengan geometri yaitu panjangnya 16 cm, lebarnya 14,9 cm, tebalnya 0,83 cm, nilai sudut α sebesar 3,2°. Faktor wedge sudut 20,3° sebesar (0,68 ± 0,01). Wedge sudut isodosis 20,3° bila digunakan dalam terapi pada organ dengan kemiringan 20° memberikan laju dosis yang cukup seragam. 
Sensitive Magnetic Field Sensor Based on Compensated Double Pick Up Coil Purnama, Budi; Suharyana, Suharyana; Sutomo, Artono Dwijo
IPTEK The Journal for Technology and Science Vol 23, No 1 (2012)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v23i1.16

Abstract

Sensitive magnetic field sensor based on compensated double pick up coil has been developed. In order to confirm sensitifity of modified design, experiment carried out in two steps. Firstly, sensitify of conventional design is clarified. Here pick up coil as an active sensor and solenoid as an exitation coil is separately made. Secondly, modified sensor of integrated configuration is developed. Here for both active flux gate sensor and the exitation coil is made in same one core magnetic. Ferrite and standar foil soft magnetic is utilized in this experiment. In attention, frequency of 50 Hz is used for the whole experimens. A result showed that sensitvity of the integrated configuration sensor is much larger than conventional one. Then, power consume of the integrated flux gate sensor is much lower than conventional. Finally, a range measurement of the integrated configuration sensor can be realized less than 20 T which potential may perhaps sense a change of natural local magnetic field.
Pemetaan Laju Dosis Radiasi-γ pada Pesawat Teleterapi 60Co Choiriyah, S; Sabrina, N; Riyatun, Riyatun; Suharyana, Suharyana; Muhtarom, Muhtarom; Arrozaqi, M I M
Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2020: Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2020
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/prosidingsnfa.v5i0.46611

Abstract

Abstact: Radiotherapy 60Co is a method of therapy cancer by radiation γ.  Teletherapy 60Co at RSUD Dr. Moewardi, the collimator opening area can be adjusted to (10 x 10) cm and the distance between source and surface target (SSD) is 80 cm. γ- radiation emitted by the 60Co source will spread from the collimator to the target in a cone shape so that information about the dose rate receive by patient is needed to support the accuracy of the dose in radiotherapy. To support cancer radiotherapy at a certain depth, information is needed about the dose rate at various phantom depth, the average dose rate and the quality of the dose rate distribution. By using an ionization chamber detector placed at various phantom depth and positions, information can be recorded. PDD (percentage depth dose) of radiation with energy 1,3 MeV, the largest value is at a depth of 6,5 cm, at this depth the measured umbra area is (7,8 x 7,8)cm with an average dose rate of 0,6034 Gy/menit. As the depth of measuring instrument increases, the dose rate measured will decrease exponentially, while the umbra are at the phantom depth is relatively constant.Abstrak: Radioterapi 60co merupakan salah satu metode pengobatan kanker dengan cara menembakkan radiasi γ pada sel kanker. Pesawat teleterapi 60Co di RSUD Dr. Moewardi, luas bukaan kolimator dapat diatur menjadi (10 x 10) cm dan jarak sumber dengan permukaan target (SSD) adalah 80 cm. Radiasi- γ yang dipancarkan oleh sumber 60Co akan menyebar dari kolimator ke target dengan berbentuk konus sehingga informasi tentang laju dosis yang diterima pasien sangat diperlukan untuk mendukung ketepatan dosis dalam radioterapi. Untuk mendukung radioterapi kanker pada kedalaman tertentu, diperlukan informasi tentang laju dosis pada variasi kedalaman phantom, laju dosis rata-rata dan kualitas sebaran laju dosis. Dengan menggunakan detektor ionization chamber yang diletakkan pada berbagai kedalaman dan posisi phantom, informasi dapat direkam. PDD (percentage depth dose) dari radiasi-γ berenergi 1,3 MeV terbesar nilainya  pada kedalaman 6,5 cm, pada kedalaman ini luas umbra yang terukur yaitu (7,8 x 7,8) cm dengan laju dosis rata-rata 0,6034 Gy/menit. Dengan bertambahnya posisi kedalaman letak alat ukur, laju dosis yang terukur akan menurun secara eksponensial, sedangkan luas umbra pada kedalaman fantom relatif tetap. 
Analisis Distribusi Dosis Proton pada Terapi Proton untuk Kanker Glioblastoma Menggunakan Software MCNP6 Ajeng Dewi Sekar Taji Kusumo Wardani, Raden; Suharyana, Suharyana
Jurnal Fisika Vol 13, No 1 (2023)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jf.v13i1.46917

Abstract

Software MCNP6 digunakan dalam simulasi pemodelan pada terapi proton untuk pengobatan kanker otak glioblastoma. Pada simulasi ini digunakan geometri phantom kepala leher, dengan bentuk daerah penyinaran pencil beam scanning rubik 3×3×3 dan panjang rusuk 1,2cm yang terbagi menjadi 27 kubikel. Digunakan 3 sumber radiasi proton yang diarahkan ke setiap pusat kubikel sel kanker dengan tiga variasi energi, yaitu (113; 112,9; dan 108,5) MeV. Dari hasil simulasi diperoleh sebaran dosis yang merata pada setiap kubikel sebesar (1,400±0,005) MeV/gram per proton dengan tingkat isodosis 94% dan nilai selisih relatif pada setiap kubikel paling besar 16,59%. Organ sehat yang memperoleh distribusi dosis proton dan partikel sekunder paling besar adalah otak, dengan dosis total sebesar (0,386±0,001) MeV/gram per proton. Dari distribusi dosis pada sel kanker, diperoleh waktu penyinaran untuk mematikan sel kanker glioblastoma adalah (33,838±0,183) sekon dengan arus proton sebesar 1 nA.Kata Kunci: Glioblastoma, MCNP6, partikel sekunder, terapi proton.
Optimization of Energy for Proton Therapy with Pencil Beam Collimator Model in Craniopharyngioma Tumor Using MCNP6 Code Putri, Weni Antari; Riyatun, Riyatun; Darmanto, Darmanto; Suharyana, Suharyana; Arianto, Fajar
Journal of Physics and Its Applications Vol 6, No 1 (2023): November 2023
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v6i1.18100

Abstract

Computational simulations of proton therapy with a pencil beam collimator for craniopharyngioma have been done using MCNP6. A pencil beam was radiated towards cube shaped tumor cells in size 1.2 cm, located at a 5.4 cm depth from the surface of the scalp. A 0.1 cm pencil beam was radiated from the left 19.6 cm from the scalp. The cube of tumor cell is divided into the front layer, middle layer, and back layer. Each layer of the tumor cell is divided into 9 cubicles, thus there are 27 cubicles. Using various energy from 108 MeV to 115 MeV and various intensity of energy for each irradiation, it produces the dose for each cubicle in unit MeV/gram per proton. The best isodoses occurred in 5 variations of energy which is 108.2; 111.2; 113.4; 114.7 and 115 MeV. The healthy organ that received the largest dose of the proton is the brain, it is (7.38±0.01)×10-2 MeV/gram per proton, or only 0.412% compared to the tumor cell dose.
Analysis of Total Proton Therapy Dose Distribution with Pencil Beam Collimator Model and Varied Beam Directions in Craniopharyngioma Tumor using MCNP6 Software Hayati, Widia; Utari, Utari; Anwar, Fuad; Suharyana, Suharyana; Arianto, Fajar; Khakim, Azizul
Journal of Physics and Its Applications Vol 7, No 1 (2024): November 2024
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v7i1.23977

Abstract

Proton therapy modeling for treating craniopharyngioma tumors was conducted using a pencil beam collimator, and variations in beam directions were performed using MCNP6 software. The simulation was carried out on a head and neck phantom with the tumor cells modeled within a cubic irradiation area geometry with a 1.2 cm side length, divided into 27 small cubic voxels with a small voxel side length of 0.4 cm. The radiation source from the irradiation area's right, left, and top directions, with a diameter of 0.4 cm, was directed at each cubic voxel. Variation in radiation source directions indicated that irradiation from the right direction of the irradiation area is the most recommended approach, with a dose uniformity level of 83.47%. Healthy organs surrounding the irradiation area received lower doses than those obtained by tumor cells, and the majority remained below the Organ At Risk (OAR) threshold. Healthy organs received the highest dose, particularly in the brain region, at a relative 0.46% compared to the total dose received by tumor cells.
Catalog of History Manuscrip Collection of Rekso Pustoko Mangkunegaran Library Collection Surakarta: Pembuatan Katalog Manuskrip Sejarah Koleksi Perpustakaan Rekso Pustoko Mangkunegaran Surakarta Darmarastri, Hayu Adi; Susanto, Susanto; Sutirto, Tundjung Wahdi; Supariadi, Supariadi; Suharyana, Suharyana; Dadtun, Yusana Sasanti; Sudarno, Sudarno
Progress In Social Development Vol. 2 No. 2 (2021): July 2021
Publisher : Fakultas Ilmu Sosial dan Ilmu Politik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/psd.v2i2.28

Abstract

ABSTRACT: The Rekso Pustoko Mangkunegaran Library has various types of historical manuscripts, covering history from ancient to modern periods. The existence of these collections is certainly very useful for writing history, especially the history of Java. Unfortunately, there are still many historical researchers in Indonesia who use colonial archival sources such as Besluit, Algemeen Verslag, Memorie van Overgave and documents such as Staatsblad, Rijksblad and Regeering Almanac instead of using existing historical manuscripts. This is due to the difficulties experienced by historical researchers in reading manuscripts which in terms of material are written by hand and use Javanese language and letters. To overcome this problem, it is necessary to catalog the manuscripts. The catalog of historical manuscripts in addition to containing the manuscript code number also contains a synopsis of the contents of the manuscript. This, in addition to making it easier for researchers to find manuscripts, also helps in understanding the contents of historical manuscripts from the Rekso Pustoko Mangkunegaran collection. The purpose of this service is to catalog the historical manuscripts of the Rekso Pustoko Mangkunegaran collection. ABSTRAK: Perpustakaan Rekso Pustoko Mangkunegaran mempunyai berbagai jenis manuskrip sejarah, meliputi sejarah dari periode kuno hingga modern. Keberadaan koleksi-koleksi ini tentu sangat bermanfaat bagi penulisan sejarah terutama sejarah Jawa. Sayangnya, masih banyak peneliti sejarah di Indonesia yang lebih banyak menggunakan sumber arsip kolonial seperti Besluit, Algemeen Verslag, Memorie van Overgave maupun dokumen seperti Staatsblad, Rijksblad dan Regeering Almanak dibandingkan memanfaatkan manuskrip sejarah yang ada. Hal ini dikarenakan kesulitan yang dialami peneliti sejarah dalam membaca manuskrip yang dari segi material ditulis dengan tangan serta menggunakan bahasa dan huruf Jawa. Untuk mengatasi masalah ini diperlukan upaya katalogisasi manuskrip. Katalogisasi manuskrip sejarah selain berisi nomor kode manuskrip juga berisi sinopsis dari isi manuskrip. Hal ini selain mempermudah peneliti dalam menemukan manuskrip juga sekaligus membantu dalam memahami isi manuskrip sejarah koleksi Rekso Pustoko Mangkunegaran. Tujuan dilakukannya pengabdian ini adalah untuk membuat katalog manuskrip sejarah koleksi Rekso Pustoko Mangkunegaran.
Analysis of Dose Distribution Alpha and Secondary Particles in Therapy Alpha for Glioblastoma Cancer Using MCNP6 Software Agustina, Sheila; Suharyana, Suharyana; Kusumandari, Kusumandari; Arianto, Fajar
Journal of Physics and Its Applications Vol 7, No 4 (2025): November 2025
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v7i4.25893

Abstract

The alpha therapy modeling was performed for the treatment of glioblastoma brain cancer using MCNP6 software. The simulation used a head and neck phantom geometry, with a spherical shape of the radiation direction of the cancer cells with a radius of one cm divided into 27 targets. One radiation source is directed to each target center of the cancer cells with five energy variations, namely (430, 425, 415, 410, and 400) MeV. The simulation results are in the form of a distribution of absorbed doses in all targets and healthy cells around them. The simulation results show an average dose distribution of (1.2902 ± 0.0024) 10-11 Gy/alpha with an isodose level of 69.75%. The healthy organ that receives the largest dose and secondary particle distribution after cancer cells is the brain, with an accumulative dose of (1.7446 ± 0.0033) 10-15 Gy/alpha. The dose distribution on cancer cells shows that the irradiation time to kill glioblastoma cancer cells is (1456±0.14) seconds with an alpha current of 1 nA.