Claim Missing Document
Check
Articles

Found 39 Documents
Search

Analysis of Splicing Manipulation in Digital Images using Dyadic Wavelet Transform (DyWT) and Scale Invariant Feature Transform (SIFT) Methods Muhidin, Zumratul; Karim, Muh. Nasirudin; Efendi, Muhamad Masjun
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8540

Abstract

In the digital age, image manipulation is common, often done before publication on social media. However, this can lead to negative impacts, including visual deception. This research aims to detect splicing type image manipulation using Dyadic Wavelet Transform (DyWT) and Scale Invariant Feature Transform (SIFT) methods. The process starts with image decomposition using DyWT to obtain LL sub-images, followed by local feature extraction using SIFT. An application built on desktop-based Matlab source was developed to detect splicing forgery in digital images. The test used 20 images, this image dataset was taken from canon 5d mark II camera and Vivo X80 mobile phone. Each 10 original images, and 10 edited images. These 10 original images are left as they are without making changes, editing or manipulation, while the other 10 images are changed, edited or manipulated using editing software, the results of this editing are uploaded to social media, such as Facebook and Instagram, which will later be used as datasets in testing. The results show that the splicing technique is detected accurately, and processing is faster on images with low pixel resolution. The DyWT and SIFT methods are effective in detecting post-processing attacks such as rotation and rescaling, although they have drawbacks. DyWT struggles in detecting subtle changes and noise, while SIFT is less effective on non-geometric manipulations. Overall, both methods face challenges in detecting complex manipulations and require significant computational resources, especially on high-resolution images.
Analysis of Copy-move Manipulation in Digital Images using Scale Invariant Feature Transform (SIFT) and SVD-matching Methods Efendi, Muhamad Masjun; Nukman, Nukman
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8937

Abstract

In recent years, more and more data has been created in digital form, allowing for easier control over storage and manipulation thanks to technological advancements. Unfortunately, these advancements also bring with them many risks, especially those related to the security of digital files. One of the concerns of many organisations is digital forgery, as it is increasingly easy to create fake images without leaving obvious traces of manipulation. One form of image forgery known as 'copy-move' is considered one of the most difficult problems in forgery detection. In this case, a portion of an image is copied and pasted at another location in the same image to hide unwanted objects in the scene. In this paper, we propose a method that automatically detects duplication areas within the same image. Duplication detection is performed by identifying local characteristics of the image (key points) using the Scale Invariant Feature Transform (SIFT) method and matching identical features using the Singular Value Decomposition (SVD) method. The results obtained show that our proposed hybrid method is robust to geometric transformations and is able to detect duplication areas with high performance.
Sentiment Analysis of a 271 Trillion Rupiahs Corruption Case Using LSTM Selamet Riadi; Rudi Muslim; Emi Suryadi; Karina Nurwijayanti; M. Zulpahmi; Muhamad Masjun Efendi; Bahtiar Imran
International Journal of Informatics and Computation Vol. 7 No. 1 (2025): International Journal of Informatics and Computation
Publisher : University of Respati Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35842/ijicom.v7i1.104

Abstract

Corruption is one of the most pressing issues in Indonesia, significantly affecting public trust in governance and the nation’s development. Among the many corruption cases that have surfaced, the recent 271 trillion rupiah corruption case has drawn widespread attention and public discourse. Understanding the public's perception and sentiment regarding such cases can provide valuable insights into how these issues impact society. Researchers identified an opportunity to leverage sentiment analysis as a method to capture and analyze public sentiment in this context. The dataset for this study was collected from the social media platform Twitter (X) using a data crawling technique. Prior to analysis, preprocessing was performed to clean and prepare the data. After preprocessing, the data was categorized into three sentiment labels: negative, positive, and neutral. To perform sentiment classification, this study utilized the LSTM (Long Short-Term Memory) algorithm, a deep learning method particularly suited for sequential data analysis. The model was trained over a total of 10 epochs. The classification results demonstrated that the LSTM algorithm achieved an accuracy of 0.9365 at the 10th epoch, showcasing its effectiveness in analyzing public sentiment regarding 271 trillion rupiah corruption issues.
Perancangan Sistem Pemberian Pakan Otomatis Pada Sapi Menggunakan Teknologi Internet Of Things Ismayani; Lalu Delsi Samsumar; Muhamad Masjun Efendi
Journal of Computer Science and Technology (JOCSTEC) Vol 3 No 1 (2025): JOCSTEC - Januari
Publisher : PT. Padang Tekno Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59435/jocstec.v3i1.416

Abstract

Di Lombok Barat, banyak peternak mengalami kesulitan karena minimnya lahan untuk menggembalakan ternak akibat konversi lahan menjadi perumahan dan area industri. Dalam situasi ini, peternak mungkin lupa atau tidak tepat waktu dalam memberikan pakan, serta menghadapi kesulitan dalam mencari rumput. Sebagai solusinya, dikembangkanlah sistem pemberian pakan pelet otomatis untuk sapi yang berbasis Internet of Things (IoT). Metode yang diterapkan dalam pengembangan sistem ini adalah metode prototype. Hasil penelitian menunjukkan bahwa sistem pemberian pakan otomatis berbasis IoT berfungsi dengan baik sesuai dengan komponen yang digunakan. Sistem ini memanfaatkan servo, sensor ultrasonik, sensor RTC, dan dilengkapi dengan LCD untuk menampilkan informasi mengenai sisa pakan dan status pakan (on atau off).
Perancangan Sistem Deteksi Kebocoran Gas Dan Api Berbasis IOT Di Lombok Utara Fadia Karunia Utami; Zaenudin; Muhamad Masjun Efendi; Lalu Delsi Samsumar
Journal of Computer Science and Technology (JOCSTEC) Vol 3 No 1 (2025): JOCSTEC - Januari
Publisher : PT. Padang Tekno Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59435/jocstec.v3i1.426

Abstract

Liquified Petroleum Gas (LPG) merupakan kebutuhan rumah tangga yang saat ini paling banyak dimanfaatkan oleh masyarakat sebagai bahan bakar selain minyak bumi. Apabila gas LPG mengalami kebocoran tidak dapat dideteksi apabila jarak indra penciuman cukup jauh, sehingga diperlukan sebuah sistem untuk mendeteksi terjadinya kebocoran gas yang dapat menyebabkan kebakaran melalui jarak jauh. Penelitian ini bertujuan untuk mendeteksi terjadinya kebocoran gas dan kebakaran yang dapat memberikan informasi kepada pengguna melalui pesan ke aplikasi Telegram. Metode penelitian yang digunakan adalah prototype. Hasil penelitian ini mampu merancang sistem untuk mendeteksi adanya kebocoran gas dan kebakaran menggunakan NodeMCU ESP8266 berbasis IoT, dimana alat ini dapat memberikan tanda peringatan berupa nyala lampu LED, suara alarm dari buzzer, menampilkan keadaan melalui LCD, dan menerima notifikasi peringatan ke Telegram.
Motorcycle Security System Using Fingerprint Authentication Based on the Internet of Things (IoT) Sutrisno, Sutrisno; Samsumar, Lalu Delsi; Efendi, Muhamad Masjun
Journal of Computer Science and Informatics Engineering Vol 4 No 4 (2025): October
Publisher : Ali Institute of Research and Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55537/cosie.v4i4.1259

Abstract

The increasing cases of motorcycle theft in Indonesia reveal the weaknesses of conventional security systems, such as mechanical locks that are easily compromised. This condition creates a scientific gap for developing security solutions based on biometric technology and the Internet of Things (IoT). This study proposes the design of a motorcycle security system with fingerprint authentication integrated with IoT. The research method used is prototyping, which includes requirement analysis, system design, prototype development, and testing. The system is built using an ESP32 as the main controller, an AS608 fingerprint sensor for user identification, a 2-channel relay for electrical control, a solenoid lock as the physical locking mechanism, and the Blynk application for remote control via the internet, which also serves as an alternative to the fingerprint sensor in case of errors or failures. The test results demonstrate that the system can accurately recognize registered fingerprints, activate the motorcycle’s electrical system, and automatically lock and unlock the solenoid with a fast response. The Blynk application functioned effectively as both a real-time control medium and an alternative control button when the fingerprint sensor experienced errors. These findings indicate that the proposed system can enhance motorcycle security compared to conventional methods while also providing ease of access for users. However, this research is still limited to the laboratory prototype stage and has not yet been directly implemented on motorcycles under real-world conditions.
Analisis Manipulasi Splicing pada Citra Digital menggunakan Metode Discrete Cosine Transform (DCT) dan Scale Invariant Feature Transform (SIFT) Efendi, Muhamad Masjun; Salman, Salman
CESS (Journal of Computer Engineering, System and Science) Vol. 9 No. 1 (2024): January 2024
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/cess.v9i1.53156

Abstract

Pemalsuan dalam citra digital seringkali terjadi di era teknologi saat ini. Bantuan software pengolahan citra memudahkan dan mempercepat proses manipulasi, mendorong orang untuk melakukan perubahan sebelum citra dipublikasikan di internet atau media sosial. Meski kegiatan ini umum dilakukan, seringkali merugikan orang lain dan merupakan bentuk penipuan publik terhadap keaslian citra. Salah satu metode manipulasi yang kerap kali digunakan adalah splicing, splicing adalah menambah objek dalam citra, contohnya meletakkan suatu objek pada citra target yang seolah-olah objek tersebut berada disana. Penelitian ini bertujuan untuk mendeteksi manipulasi jenis splicing dengan menggunakan metode Discrete Cosine Transform (DCT) dan Scale Invariant Feature Transform (SIFT). Metode DCT mentransformasikan blok piksel citra menjadi koefisien, sedangkan SIFT digunakan untuk menemukan frekuensi pada citra grayscale dengan mendeteksi keypoint yang sama. Metode ini mampu mendeteksi objek citra yang dimanipulasi dengan baik dan akurat. Dari hasil pengujian yang dilakukan, nilai akurasi deteksi image splicing pada citra dari internet dan koleksi citra hasil koleksi pribadi mencapai 100%. Harapannya, hasil penelitian ini dapat bermanfaat bagi masyarakat dalam membedakan citra yang asli dengan yang sudah dimanipulasi melalui teknik splicing.
Metode Deteksi Tepi Block JPEG Terkompresi untuk Analisis Manipulasi Splicing pada Citra Digital Efendi, Muhamad Masjun; Sugiantoro, Bambang; Prayudi, Yudi
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 2 No. 1 (2018): PROSIDING SEMNAS INOTEK Ke-II Tahun 2018
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/inotek.v2i1.449

Abstract

Citra digital semakin mudah untuk dimanipulasi dan diedit. Sering kali sebelum citra tersebut dipublikasi dilakukan proses manipulasi. Salah satu bentuk manipulasi citra adalah splicing. Manipulasi ini dilakukan dengan menduplikasi bagian tertentu dari satu citra atau lebih dan meletakkannya pada bagian tertentu di citra target (copy-move pada citra yang berbeda). Tujuan dari manipulasi splicing ini adalah untuk menambah objek dalam citra, contohnya meletakkan suatu objek pada citra target yang seolah-olah objek tersebut berada disana. Pada penelitian ini manipulasi citra jenis ini dideteksi menggunakan metode deteksi tepi block JPEG terkompresi. Metode ini mampu mendeteksi objek citra yang dimanipulasi dengan baik dan akurat.
Analysis Manipulation Copy-Move on Image Digital using SIFT Method and Histogram Color RGB Efendi, Muhamad Masjun; Salman, Salman; Subli, Moh.
JISA(Jurnal Informatika dan Sains) Vol 5, No 2 (2022): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v5i2.1334

Abstract

The application of the SIFT (Scale Invariant feature transform) algorithm and the RGB color histogram in Matlab can detect the suitability of objects in digital images and perform tests accurately. In this study, we discuss the implementation to obtain object compatibility on digital images that have been manipulated using the SIFT Algorithm method on the Matlab source, namely by comparing the original image with the manipulated image. The suitability of objects in digital images is obtained from the large number of keypoints obtained, other additional parameters, namely comparing the number of pixels in the analyzed image, as well as changes in the histogram in RGB color in each analyzed image. The purpose of this research is how to apply the SIFT (Scale Invariant feature transform) Algorithm and RGB color histogram to detect the suitability of objects in digital images and perform tests accurately. This study discusses the implementation to obtain object compatibility in digital images that have been manipulated using the SIFT Algorithm method on Matlab sources, namely by comparing the original image with the manipulated image. The suitability of objects in digital images is obtained from the large number of keypoints obtained, other additional parameters, namely comparing the number of pixels in the analyzed image, as well as changes in the histogram in RGB color in each analyzed image