Claim Missing Document
Check
Articles

Found 13 Documents
Search

Enhancing Qur'anic Recitation Experience with CNN and MFCC Features for Emotion Identification Syafa'ah, Lailis; Prasetyono, Roby; Hariyady, Hariyady
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 9, No. 2, May 2024
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v9i2.2007

Abstract

In this study, MFCC feature extraction and CNN algorithms are used to examine the identification of emotions in the murottal sounds of the Qur'an. A CNN model with labelled emotions is trained and tested, as well as data collection of Qur'anic murottal voices from a variety of readers using MFCC feature extraction to capture acoustic properties. The outcomes show that MFCC and CNN work together to significantly improve emotion identification. The CNN model attains an accuracy rate of 56 percent with the Adam optimizer (batch size 8) and a minimum of 45 percent with the RMSprop optimizer (batch size 16). Notably, accuracy is improved by using fewer emotional parameters, and the Adam optimizer is stable across a range of batch sizes. With its insightful analysis of emotional expression and user-specific recommendations, this work advances the field of emotion identification technology in the context of multitonal music.
Harmonizing Emotion and Sound: A Novel Framework for Procedural Sound Generation Based on Emotional Dynamics Hariyady, Hariyady; Ag Ibrahim, Ag Asri; Teo, Jason; Md Ajis, Ahmad Fuzi; Ahmad, Azhana; Md Yassin, Fouziah; Salimun, Carolyn; Weng, Ng Giap
JOIV : International Journal on Informatics Visualization Vol 8, No 4 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.4.3101

Abstract

The present work proposes a novel framework for emotion-driven procedural sound generation, termed SONEEG. The framework merges emotional recognition with dynamic sound synthesis to enhance user schooling in interactive digital environments. The framework uses physiological and emotional data to generate emotion-adaptive sound, leveraging datasets like DREAMER and EMOPIA. The primary innovation of this framework is the ability to capture emotions dynamically since we can map them onto a circumplex model of valence and arousal for precise classification. The framework adopts a Transformer-based architecture to synthesize associated sound sequences conditioned on the emotional information. In addition, the framework incorporates a procedural audio generation module employing machine learning approaches: granular and wavetable synthesis and physical modeling to generate adaptive and personalized soundscapes. A user study with 64 subjects evaluated the framework through subjective ratings of sound quality and emotional fidelity. Analysis revealed differences among samples in sound quality, with some samples getting consistently high scores and some getting mixed reviews. While the emotion recognition model reached 70.3% overall accuracy, it performed better at distinguishing between high-arousal emotions but struggled to distinguish between emotions of similar arousal. This framework can be utilized in different fields such as healthcare, education, entertainment, and marketing; real-time emotion recognition can be applied to deliver personalized adaptive experiences. This step includes acquiring multimodal emotion recognition in the future and utilizing physiological data to understand people's emotions better.
Edukasi PHBS Dan Skrining Kesehatan Siswa Anak Pekerja Migran Di CLC 26 Kimanis Sabah Malaysia Narulita, Sari; Musa, Mazlinda; Agus Yuarsa, Tri; Colina, Ellya; Ernauli, Ernauli; Hariyady, Hariyady
Jurnal Pengabdian Masyarakat Bakti Parahita Vol. 6 No. 1 (2025): Jurnal Pengabdian Masyarakat Bakti Parahita
Publisher : Universitas Binawan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54771/

Abstract

Akses layanan pendidikan dan kesehatan merupakan tantangan bagi anak-anak pekerja migran Indonesia di Malaysia, termasuk di negara bagian Sabah. Keberadaan mereka di daerah perkebunan kelapa sawit yang terpencil sering kali terbatas akses terhadap fasilitas pendidikan dan fasilitas layanan lainnya. Hal ini memerlukan pendekatan yang komprehensif untuk memastikan bahwa hak-hak pendidikan dan kesehatan anak-anak migran tetap terpenuhi. Pengabdian bertujuan untuk memberikan data dasar status kesehatan siswa di CLC 26 Kimanis dan meningkatkan pengetahuan serta kesadaran berprilaku hidup bersih dan sehat. Peserta kegiatan terdiri dari 55 siswa yang terdiri dari 40 siswa SD (kelas 4 - kelas 6) dan 15 siswa SMP. Kegiatan pengabdian dimulai dengan mengidentifikasi kondisi CLC 26 Kimanis, membuat perencanaan kegiatan dan melakukan implementsi kegiatan dan mengevaluasi hasil kegiatan pengabdian kepada masyarakat. Kegiatan pengabdian yang dilakukan berupa kegiatan edukasi  perilaku hidup bersih dan sehat di sekolah melalui metode memonton video yang dilanjutkan dengan diskusi dan tanya jawab. Kegiatan pemeriksaan skrining kesehatan dilakukan dengan pengukuran Berat Badan, Tinggi Badan, pemeriksaan kesehatan gigi mulut, pemeriksaan ketajaman penglihatan menggunakan Snellen Card, Pemeriksaan buta warna dengan Ishihara. Hasil kegiatan PKM ditemukan bahwa 48,5% siswa mengalami masalah gigi berlubang, karang gigi, dan kebersihan mulut yang kurang sehat dan beberapa siswa mengalami stomatitis. Selain itu, ditemukan beberapa 2,75% siswa dengan penurunan penglihatan (Low Vision), dua orang kasus buta warna yang sebelumnya tidak teridentifikasi. Kesimpulan pengabdian ini teridentifikasi beberapa masalah kesehatan anak sekolah dan bertambahnya wawasan pengetahuan tentang  pentingnya perilaku hidup bersih dan sehat. Tindaklanjut berupa pelaporan hasil kepada SIKK (Sekolah Indonesia Kota Kinabalu) guna penanganan lebih lanjut,  pelayanan kesehatan anak sekolah dan bimbingan serta pengarahan arah pendidikan untuk siswa yang identifikasi buta warna untuk pendidikan lanjutan.