Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Building of Informatics, Technology and Science

Implementasi LDA, TF-IDF, dan BERT dalam Sistem Rekomendasi Dosen Pembimbing untuk Mahasiswa Syabilla, Mutiara; Zeniarja, Junta; Nabila, Qotrunnada
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6499

Abstract

The selection of thesis supervisors is often done manually, which tends to be time-consuming in matching students' research topics with the expertise of faculty members. This study develops a thesis supervisor recommendation system based on the title and abstract of students' final projects, integrating Latent Dirichlet Allocation (LDA), Term Frequency-Inverse Document Frequency (TF-IDF), and Bidirectional Encoder Representations from Transformers (BERT). The research dataset includes 1,096 records from 71 faculty members in the Informatics Engineering Department at Universitas Dian Nuswantoro, collected through Google Scholar. The analysis process begins with text preprocessing such as case folding, tokenization, and stemming, followed by topic analysis using LDA, term-specific weighting through TF-IDF, and context-rich vector representation using BERT. The model matches students' research topics with faculty expertise using Cosine Similarity. Evaluation results show an accuracy of 80%, precision of 66%, and recall of 19%, indicating that the model can provide accurate recommendations, though some relevant items are still missed. This model proves effective in facilitating the selection of thesis supervisors. This research is expected to assist students in finding suitable supervisors and help faculty members identify students with relevant research interests.
Optimizing Mental Health Classification on Reddit: A Comparative Study of Adam, RMSProp, and SGD with L2 Regularization Putra, Vander Mulya; Zeniarja, Junta
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6532

Abstract

The rising prevalence of mental health discussions on social media platforms has created new opportunities for understanding and supporting individuals facing psychological challenges. This study examines the automated classification of mental health content on Reddit, focusing on five clinically significant conditions (ADHD, anxiety, bipolar disorder, depression, and PTSD) and non-clinical discussions. Reddit was selected as the primary data source due to its unique subreddit structure and rich user-generated content in mental health communities, where individuals actively seek support and share experiences. Using a Multi-layer Perceptron (MLP) architecture, the study conducted a comprehensive evaluation of three optimization algorithms (Adam, RMSProp, and SGD) in conjunction with L2 regularization (λ=0.01) for mental health text classification. The study incorporated Easy Data Augmentation (EDA) techniques to enhance model robustness, implementing paraphrase-based augmentation methods that improved classification performance by 3%. Through systematic evaluation across multiple metrics, the study found that the RMSProp optimizer without L2 regularization achieved optimal performance, demonstrating 83% precision and 82% recall across all diagnostic categories. Notably, the application of L2 regularization consistently resulted in decreased model performance across all optimizers, with performance degradation ranging from 3% to 52%. These findings contribute to the development of more accurate automated mental health monitoring systems while highlighting the critical role of optimizer selection in mental health-related Natural Language Processing (NLP) tasks.
Co-Authors Abu Salam Abu Salam Adhitya Nugraha Adhitya Nugraha Adi Wibowo Afridiansyah, Rahmanda Agus Winarno Agus Winarno, Agus Ahmad Alaik Maulani Ailsa Nurina Cahyani Ainul Yaqin Alan Ma’ruf, Farda Alya Nurfaiza Azzahra Anisatawalanita Ukhifahdhina Anugrah, Muhammad Ikhsan Ardytha Luthfiarta Ardytha Luthfiarta Asih Rohmani Asih Rohmani Asih Rohmani Atika Rahmawati Bayu Aryanto Budi Warsito Cahyani, Ailsa Nurina Candra, Rejka Aditya Catur Supriyanto Catur Supriyanto Debrina Luna Arghata Mangkawa Deby Arida NiMatus Sa’adah Devi Ayu Rachmawati Dianti, Reza Nur Diyan Adiatma Dzaky, Azmi Abiyyu Edi Faisal Edi Sugiarto Edi Sugiarto Edi Sugiarto Egia Rosi Subhiyakto, Egia Rosi Erwin Yudi Hidayat Esmi Nur Fitri Esmi Nur Fitri Esmi Nur Fitri Fajarudin Zakariya Farda Alan Ma'ruf Farda Alan Ma’ruf Ferry Bintang Nugroho Fikri Budiman Fikri Budiman Firmansyah, Gustian Angga Ganiswari, Syuhra Putri Guruh Fajar Shidik Haresta, Alif Agsakli Harun Al Azies Ida Ayu Putu Sri Widnyani Ika Novita Dewi Jaya, Sava Irhab Atma Khoirunnisa, Emila Kiki Widia Kurniawan Ridwan Surohardjo Kurniawan, Defri L. Budi Handoko Luh Putu Ratna Sundari Lutfi Kharisma M Hafidz Ariansyah M. Hafidz Ariansyah Manurung, Ayub Michaelangelo Mas'ud, Ryan Ali Maulani, Ahmad Alaik Mufida Rahayu Muhammad Jamhari Muhammad Joyo Satrio Muljono Muljono Nabila, Qotrunnada Nitho Alif Ibadurrahman Novi Hendriyanto Nur Rokhman Octaviani, Dhita Aulia Paramita, Cinantya Pratama, Rifky Ariya Pulung Nurtantio Andono Putra, Vander Mulya Putri, Rusyda Tsaniya Eka Raden Arief Nugroho Rama Eka Saputra Ramadhan Rakhmat Sani Ramadhan, Ahnaf Irfan Ramadhan, Muhammad Eky Restu Agung Pamuji Rezaroebojo, Rizal Riyan Ardiansyah Rohman, Adib Annur Savicevic, Anamarija Jurcev Setiawan, Dicky Setiawan Sindhu Rakasiwi Sri Winarno Sri Winarno Sri Winarno Syabilla, Mutiara Utomo, Danang Wahyu Valentina Widya Suryaningtyas, Valentina Widya Wibowo Wicaksono Wibowo Wicaksono