Claim Missing Document
Check
Articles

Found 22 Documents
Search

THE EFFECT OF INSECTICIDE ON PREDATOR-PREY MODEL TO CONTROL THE BROWN PLANTHOPPER Larasati, Niken; Reorita, Rina
Prosiding Vol 3, No 1 (2012)
Publisher : Prosiding

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The interaction of brown planthopper with its natural enemies can be represented in a predator-prey model. In this research, predator prey model influenced by insecticide is discussed. It is assumed that insecticide is applied at only one time when the population of brown planthopper is rised. The simulation results indicate that the brown planthopper population could be reduced significantly, but only in a moment. For a long periods of time, the brown planthopper population and their natural enemies will be oscillated and lead to the specified value. This means, the brown planthopper populations for long periods of time only depends on the mortality rate of predator and the level of interaction of the brown planthopper and predators.
Optimal control for SIR Model with The Influence of Vaccination, Quarantine and Immigration factor Susi Agustianingsih; Rina Reorita; Renny Renny
Jurnal Matematika, Statistika dan Komputasi Vol. 16 No. 3 (2020): JMSK, MAY, 2020
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (787.721 KB) | DOI: 10.20956/jmsk.v16i3.6942

Abstract

The SIR model is one of the mathematical model which describes the characteristic of the spread of infectious disease in differential equation form by dividing the human populations into three groups. There are individual susceptible group, individual infective group, and individual recovered group. This model involves vaccination, quarantine, and immigration factors. Vaccination and quarantine must be given as much as it needs, so a control is required to minimize infection of disease and the number of individual infective with a minimum costs. In this research, optimal control of SIR model with vaccination, quarantine, and immigration factor is solved by using Pontryagin maximum principle and numerically simulated by using Runge-Kutta method. Numerical simulation results show optimal control of treatment, citizen of vaccination, immigrant of vaccination, and quarantine will accelerate the decline of infected number with the minimum cost, compared with the optimal control of SIR model without quarantine factor.
Model Dinamik Kontrol Optimal Predator-Prey dengan Respon Fungsional Beddington-De Angelis pada Tanaman Padi Renny Renny; Rina Reorita
MAJAMATH: Jurnal Matematika dan Pendidikan Matematika Vol. 4 No. 1 (2021): Vol. 4 No.1 Maret 2021
Publisher : Prodi Pendidikan matematika Universitas Islam Majapahit (UNIM), Mojokerto, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36815/majamath.v4i1.869

Abstract

Pada penelitian ini akan digunakan model predator-prey dengan respon fungsional Beddington-De Angelis yang dikembangkan oleh Prasad , namun dengan memberikan suatu kontrol optimal pada model sehingga diharapkan pengendalian terhadap OPT (predator) tidak akan memberikan dampak negatif bagi lingkungan. Kontrol optimal yang digunakan adalah dengan menggunakan teori bang-bang control dan singular control. Hasil simulasi model menunjukkan bahwa dengan menggunakan bang-bang control dan singular control, diperoleh bahwa model dinamik kontrol optimal predator-prey dengan respon fungsional Beddington de-Angelis dengan pemberian kontrol berupa pemberian pestisida kepada hama tanaman di lahan persawahan akan mempercepat penurunan proporsi jumlah hama yang ada dan juga berpengaruh terhadap proporsi tanaman padi yang ada.
Allometric model to estimate biomass and carbon of seedling in Pangarengan mangrove forest, Cirebon, West Java Budi Mulyana; Ris Hadi Purwanto; Puspita Intan Sari; Afni Atika Marpaung; Muhamad Faqih Hidayatullah; Ilham Satria Raditya Putra; Agik Dwika Putra; Rina Reorita
Jurnal GALAM Vol 2, No 1 (2021): Jurnal Galam Vol. 2 No.1 2021
Publisher : Jurnal GALAM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/glm.2021.2.1.29-40

Abstract

The mangrove ecosystem in Pangarengan Village, Cirebon District, provides benefits for environmental services, including as carbon sinks and stores. In estimating the carbon storage of mangrove forests, in general, allometric equations are used. Unfortunately, the allometric equations currently available are still composed of the stages of growth of saplings, poles, and trees. Thus, the purpose of this study was to develop an allometric model for seedlings in mangrove forests. The research was conducted in June 2021 in the mangrove forest of Pangarengan Village, Cirebon District. The equipment that used in the study were calipers, measuring tape, digital scales, and crop shears. Research materials were mangrove seedlings of Rhizophora mucronata, Avicennia marina, and Sonneratia caseolaris. The best allometric model in estimating dried weight biomass with base diameter predictor is Y = 35,013 Dp1,860 (R2adj = 0,873; SEE = 0,472) using tip diameter predictor is Y = 249.573 Du2,276 (R2adj = 0,524; SEE = 0,710). While the allometrics for estimating the carbon content of seedlings were Y = 5,835 Dp1,804 (R2adj = 0,831; SEE = 0,528) and Y = 35,750 Du2,107 (R2adj = 0,607; SEE = 0,805). Thus, the power allometric model with base diameter predictor was quite good in estimating dried weight biomass and seedling carbon content in the mangrove forest of Pangarengan Village.
ANALISIS KESTABILAN MODEL LESLIE-GOWER DENGAN PENGARUH WAKTU TUNDA DAN PEMANENAN PROPORSIONAL Azhari Kemalasari; Rina Reorita; Renny Renny
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 14 No 1 (2022): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2022.14.1.5898

Abstract

The main purpose of this research is to study the Leslie-Gower model and the response of the Holling type II with time delay and proportional harvesting. The method used in the completion of the model is qualitative, namely by analyzing the stability of the model's equilibrium point. The Leslie-Gower model and Holling type II response with delay time and proportional harvesting have four equilibrium points. There is one point of unstable equilibrium and one point of equilibrium that is stable. Meanwhile, for the other two equilibrium points, it depends on the value of the parameters taken. The delay time resulted in oscillations in the model. The greater the delay time value used, the greater the inequality in oscillations that occur in the system. This means the model will take longer to stabilize.
SEKITAR OPERATOR DAN MATRIKS LAX ( LAX PAIR ) UNTUK PERSAMAAN GELOMBANG AIR TIPE KdV Mashuri Mashuri; Rina Reorita; Agustini Tripena
Jurnal Siger Matematika Vol 1, No 2 (2020)
Publisher : FMIPA Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (223.116 KB) | DOI: 10.23960/jsm.v1i2.2574

Abstract

Operator dan Matriks Lax Pair merupakan operator dari sebuah persamaan diferensial parsial non linier yang dapat digunakan untuk merubah persamaan diferensial parsial dalam bentuk system persamaan diferensial biasa. Persamaan yang diperolehan akan memudahkan seseorang untuk mencari solusi dari persamaan diferensial tersebut. Dalam paper ini akan dibahas tentang penentuan operator Lax Pair dan Matriks Lax Pair dari sebuah sebuah persamaan gelombang air tipeKdV. Pencarian operator Lax Pair dimulai dengan menentukan bobot dari masing-masing suku menggunakan penskalaan invariant pada setiap variable persamaan dalam persamaan KdV yang diberikan. Selanjutnya, operator Lax Pair dibentuk berdasarkan asumsi dari bobot yang dihasilkan. Dengan menggunakan definisi operator Lax Pair maka operator yang dicari dapat ditemukan. Matriks Lax Pair dari persamaan KdV dapat dicari menggunakan konversi dari operator yang dihasilkan. Dengan menggunakan definisi matrik Lax Pair, dan melalui operasi aljabar biasa dapat dihasilkan matriks Lax Pair
PREDIKSI BERAT TUBUH SAPI PERAH FRIESIAN-HOLSTEIN MENGGUNAKAN MODEL VON BERTALANFFY Niken Larasati; Tri Puji Sulistyoningrum; Mutia Nur Estri; Idha Sihwaningrum; Rina Reorita
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 13 No 2 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2021.13.2.4949

Abstract

Pada makalah ini dibahas mengenai prediksi berat tubuh sapi perah Friesian-Holstein menggunakan model Von Bertalanffy. Laju metabolisme pada model terdiri dari anabolisme dan katabolisme. Prediksi berat tubuh sapi perah ini penting karena dapat digunakan untuk menentukan usia kawin pertama kali sapi perah FH. Usia kawin pertama yang tidak tepat dapat menyebabkan produksi susu yang rendah dan tidak tercapainya berat tubuh pedet yang ideal. Dari hasil simulasi diperoleh konstanta anabolisme sebesar 0,3854 dan konstanta katabolisme sebesar 0,0438. Dengan konstanta tersebut, diperoleh rata-rata kesalahan absolut sebesar 4,9708% (6,5358 kg). Selanjutnya, diperoleh hasil bahwa sapi dapat dikawinkan pada saat memiliki berat tubuh 273,9152 kg sampai 303,2340 kg dengan umur 59-66 minggu (14-16 bulan).
PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG Rina Reorita; Niken Larasati; Renny Renny
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 3 No 1 (2011): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2011.3.1.2970

Abstract

Indonesia has been being a country which has the most victims of avian influenza case. Avian influenza is caused by influenza virus H5N1 type. This virus can be transmitted from infected poultry to susceptible poultry and infected poutry to susceptible human. This paper describes an SIR (Susceptible, Infection, Recovery) mathematic model for the spread of avian influenza disease. The basic reproduction number will be obtained for analyzing what are the factors that can influence the epidemic. By the Pontryagin Maximum Principle, it can be seen how is the influence of vaccine as a control to the spread of disease.
KAJIAN PEMODELAN DERET WAKTU: METODE VARIASI KALENDER YANG DIPENGARUHI OLEH EFEK VARIASI LIBURAN Winda Triyani; Rina Reorita
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 4 No 1 (2012): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2012.4.1.2948

Abstract

Calendar variation method is a technique that combines ARIMA modeling and regression modeling. Calendar variation is a cyclical pattern with varying periods due to the different calendar date position for each year. There are two types of calendar variation, trading day variation and holiday variation. In this research, modeling of time series with holiday variation was studied and modification of the modeling was developed for the case of holiday effect due to Eid’s day occur. The case study was conducted to the data of train passenger number at DAOP V Purwokerto. It was found that the last model for the underlying data was the regression model with the residual following seasonal ARIMA (1,1,1)(0,0,1)12 without constant parameter.
PENENTUAN KRITERIA PENGHENTIAN ITERASI PADA ALGORITMA STROBERI Mutia Nur Estri; Siti Rahmah Nurshiami; Rina Reorita; Muhammad Okky Ibrohim
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 10 No 1 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika
Publisher : Jurusan Matematika FMIPA Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2018.10.1.2834

Abstract

This paper discusses the application of two types of stopping criterion on the strawberry algorithm, which are stopping criteria based on iterative error and Cauchy criterion. Furthermore, the strawberry algorithm program is simulated on the optimization problem with the objective function is quadratic function. The simulation results on optimization problem with the objective function is quadratic function show that strawberry algorithm with stopping criterion based on Cauchy criterion has the best performance, when compared with stopping criterion based on iterative error and without stopping criterion