Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Ilmiah Rekayasa Pertanian dan Biosistem

PENDUGAAN REDUKSI UKURAN BERBASIS MODEL ALGORITMA PERHITUNGAN BALIK PADA PENEPUNGAN CANGKANG RAJUNGAN MENGGUNAKAN BALL-MILL Vibi Rafianto; Gunomo Djoyowasito; Mochammad Bagus Hermanto; Yusuf Wibisono
Jurnal Ilmiah Rekayasa Pertanian dan Biosistem Vol 9 No 1 (2021): Jurnal Ilmiah Rekayasa Pertanian dan Biosistem
Publisher : Fakultas Teknologi Pangan & Agroindustri (Fatepa) Universitas Mataram dan Perhimpunan Teknik Pertanian (PERTETA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (949.516 KB) | DOI: 10.29303/jrpb.v9i1.217

Abstract

Rajungan (Portunus pelagicus) merupakan salah satu hewan laut yang banyak terdapat di perairan Indonesia. Limbah cangkang rajungan memiliki kadar protein (32,95%), serat kasar (10,89%), kalsium (22,93%), dan fosfor (0,78%). Kandungan kalsium yang tinggi membuat cangkang rajungan dapat diolah untuk mendapatkan senyawa hidroksiapatit, yang bisa dipergunakan untuk pupuk lepas lambat. Sebelum dikonversi menjadi senyawa hidroksiapatit, diperlukan proses pengecilan ukuran atau penepungan dari cangkang rajungan. Proses penepungan dapat dilakukan menggunakan Ball-Mill, tetapi belum ada penelitian secara khusus yang membahas tentang mekanisme penepungan cangkang rajungan menggunakan Ball-Mill. Tujuan dari penelitian ini adalah untuk menentukan parameter penggilingan dari model kinetik pada penggilingan cangkang rajungan sehingga didapatkan prediksi pengecilan ukuran partikel tepung cangkang rajungan. Dalam penelitian ini, Ball-Mill tipe batch digunakan untuk menggiling 1,5 kg cangkang rajungan kering dengan rasio diameter bola yang berbeda. Estimasi parameter pemecahan dilakukan menggunakan model algoritma penghitungan balik, dengan estimasi parameter pemecahan secara berurutan ɑ; α; δ; γ; 𝜙 = 1,1 ; 1,9 ; 1000 ; 0,5 ; 0,6 pada perlakuan A, dan α; δ; γ; 𝜙 adalah 8,8 ; 6,4 ; 1000 ; 0,6 ; 8,8 pada perlakuan B. Dengan menggunakan parameter tersebut dapat disimulasikan antara lama waktu penggilingan dengan ukuran partikel yang dihasilkan.
Klasifikasi Kualitas Teh Hitam Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Citra Digital Aprilia Nur Komariyah; Bagas Rohmatulloh; Yusuf Hendrawan; Sandra Malin Sutan; Dimas Firmanda Al Riza; Mochamad Bagus Hermanto
Jurnal Ilmiah Rekayasa Pertanian dan Biosistem Vol 11 No 2 (2023): Jurnal Ilmiah Rekayasa Pertanian dan Biosistem
Publisher : Fakultas Teknologi Pangan & Agroindustri (Fatepa) Universitas Mataram dan Perhimpunan Teknik Pertanian (PERTETA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jrpb.v11i2.542

Abstract

As a tropical country, the production of black tea in Indonesia is very huge. Because of its quality, black tea in Indonesia has been exported to many countries. To meet the required quality standards, black tea is classified into three grades, we mention it as grade A, grade B, and grade C.  However, the industries have suffered from lack of standard of quality control because they are still using manual methods. The purpose of this study was to classify three quality levels of black tea automatically using a convolutional neural network (CNN) based on deep learning. Two types of pre-trained networks were used in this study such as AlexNet and ResNet50. From the sensitivity analysis results showed very high accuracy in the training and validation process. Three best CNN models i.e AlexNet with Adam solver and learning rate 0.00005; AlexNet with RMSProp solver and learning rate 0.0001; ResNet50 with SGDm solver and learning rate 0.00005 were able to achieve training and validation accuracy up to 100%. The classification accuracy based on results from pre-trained AlexNet with Adam solver can classify Grade B and Grade C perfectly 100% without the slightest error. But, for Grade A the average accuracy was 99,7%. Meanwhile, from the confusion matrix result using AlexNet with RMSProp solver and learning rate 0.0001; ResNet50 with SGDm solver and learning rate 0.00005 can perfectly classified the black tea. From the results, it can be concluded that the CNN model can work effectively to classify black tea.
Analisis Fisik Madu Akasia Setelah diproses dengan Mesin Evaporator Vacuum Cooling Four in One Skala Industri Muzaki, M. Amin; Lastriyanto, Anang; Hermanto, Moch. Bagus; Sutan, Sandra Malin; Ahmad, Ary Mustofa; Wibowo, Sasongko Aji; Vera, Vincentia Veni; Anam, Khoiril
Jurnal Ilmiah Rekayasa Pertanian dan Biosistem Vol 13 No 1 (2025): Jurnal Ilmiah Rekayasa Pertanian dan Biosistem
Publisher : Fakultas Teknologi Pangan & Agroindustri (Fatepa) Universitas Mataram dan Perhimpunan Teknik Pertanian (PERTETA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jrpb.v13i1.1153

Abstract

Honey has significant health benefits due to its rich content of nutrients, enzymes, and bioactive compounds. However, conventional processing methods such as pasteurization can potentially degrade the physical and chemical quality of honey, including moisture content, density, total soluble solids, viscosity, and color stability. This study examines the effectiveness of the Evaporator Vacuum Cooling Four in One technology in maintaining the quality of Acacia honey compared to various pasteurization durations. The results show that vacuum cooling technology significantly preserves honey quality in terms of moisture content, density, and total soluble solids at a better level than conventional methods. Additionally, vacuum cooling optimally maintains honey's viscosity and color, demonstrating its superiority in reducing damage to bioactive components. This study is expected to contribute to the development of more efficient honey processing technology in the industry, aiming to provide high-quality honey that meets consumer health standards.