Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Civil Engineering Journal

Optimization of Integrated Reservoir for Supporting the Raw Water Supply Shafur Bachtiar; Lily M. Limantara; Moh. Sholichin; Widandi Soetopo
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-07

Abstract

This research intends to analyze the optimal operation pattern for fulfilling the raw water demand, and it is conducted in the integrated cascade reservoir of Duriangkang-Muka Kuning, Batam City, Indonesia. However, Batam City is the economic center of the Riau Islands and absolutely needs enough raw water supplies to support its development. The need for raw water in Batam City is predicted to reach about 6,630.29 l/s in 2025. Due to the population growth that is estimated to reach about 1.8 million people in 2025 and the plan of Batam City development as an industry and tourism center, Batam City is faced with the condition that reservoir management becomes a very important thing for supporting the continuity of water supply. The methodology consists of collecting the supporting data, such as inflow, reservoir capacity curve, and data on water needs; then building the optimization model by determining the objective function and constraints of the integrated reservoir; and carrying out the optimization model by using linear programming and simulation models for the integrated reservoir operation. The result presents optimal reservoir operation of the integrated Duriangkang-Muka Kuning reservoirs. The reservoir operation consists of the boundary curve of upper and lower normal operation, the outflow for fulfilling the water need, and the rule of supply pumping from Duriangkang reservoir to Muka Kuning reservoir. It is hoped that the result can be used as a reference in operating the two reservoirs to fulfill the water needs of the Batam City population. Doi: 10.28991/CEJ-2023-09-04-07 Full Text: PDF
Rice Self-Sufficiency and Optimization of Irrigation by Using System Dynamic . Asmelita; Lily M. Limantara; M. Bisri; Widandi Soetopo; Indra Farni
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-010

Abstract

This research intends to optimize the results of irrigation canals with the conversion of function to fisheries without reducing rice self-sufficiency regionally. However, irrigation is an infrastructure asset that needs to be used optimally. It is due to the water; water sources and irrigation infrastructure can provide more benefits to rice fields, which are to function as fisheries in the study location (West Sumatra Province). The aim of this research is to propose the optimal combinations of irrigated land planted with rice and those in the form of fisheries. The methodology uses System Dynamics due to the official BPS data. There are many tools that are used in this system dynamics approach, such as causal diagrams, archetype systems, diagrams of stock and flow, and the behavior of over-time graphs. The DSS generator for simulating the program in this study uses Stella, which is a new paradigm in the water resources system approach. The result shows that the potential increase in income that could be obtained by converting the rice fields to tilapia fisheries is about 126 million Rupiah per year per hectare. West Sumatra Province, as a national rice granary, has many districts that are more self-sufficient in rice, so it can be considered to utilize irrigation to become the irrigation for fisheries. The potential of rice fields that can be converted into fisheries while maintaining self-sufficiency in rice at the district/city level of West Sumatra Province is more than 61 thousand hectares, and it generates an increase in income of about 7.7 trillion per year. Doi: 10.28991/CEJ-2024-010-02-010 Full Text: PDF