Claim Missing Document
Check
Articles

Found 37 Documents
Search

Design and Evaluation of a Hybrid AES-ECC Model for Secure Server Communication using REST API Saputra, Made Wisnu Adhi; Huizen, Roy Rudolf; Hostiadi, Dandy Pramana
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4989

Abstract

Security in server-to-server communication is essential, especially in open networks vulnerable to data breaches and service disruptions. However, many existing solutions rely on a single cryptographic algorithm, limiting their ability to address diverse threats. This study aims to develop and evaluate a hybrid security model by combining the Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC) to ensure confidentiality, integrity, and authenticity of transmitted data. An experimental approach is applied through direct implementation in server communication. The model uses AES for symmetric encryption, ECC for dynamic session key exchange, and JSON Web Token (JWT) reinforced by nonce, timestamp, and HMAC-SHA256 for authentication and integrity verification. Test results show the model detects payload modification, replay attacks, JWT manipulation, and passive interception, with processing time still within an acceptable range. Communication efficiency is maintained with negligible payload overhead. The novelty of this research lies in integrating hybrid encryption with stateless authentication and integrity validation into a unified architecture. This integration allows security elements to be delivered systematically via REST API, making the model easy to adopt in existing architectures. The results of this study contribute to the advancement of secure API-based communication frameworks in the field of informatics, providing a practical, adaptable, and scalable solution for protecting data in distributed information systems.
Diabetes Mellitus Classification Using CNN-Based Plantar Thermogram Analysis Rihamzah, Muhamad; Pradipta, Gede Angga; Huizen, Roy Rudolf
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 11 No. 3 (2025): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v11i3.30640

Abstract

Diabetes Mellitus (DM) is a chronic metabolic disorder that often causes serious complications, including neuropathy and lower extremity disorders, which impact the quality of life of patients. Early detection of DM is a major challenge due to limited data and the complexity of image analysis. This study proposes a plantar thermogram image-based approach to support non-invasive diagnosis of DM through the development of a Convolutional Neural Network (CNN)-based model and machine learning techniques. This model integrates data augmentation techniques, such as rotation, flip, and zoom, to improve image variation and model robustness. Two CNN architectures, InceptionV3 and ResNet-50, are used in the training process, followed by feature selection using the Chi-Square method and classification using the Random Forest algorithm. The results showed that the proposed model achieved the best performance with accuracy, F1-score, precision, recall, and AUC (Area Under Curve) of 99.6% each. This approach makes a significant contribution by showing improvement compared to previous methods, while opening up opportunities for the development of more efficient clinical applications in early detection and monitoring of DM.
Object Classification Model Using Ensemble Learning with Gray-Level Co-Occurrence Matrix and Histogram Extraction Kurniati, Florentina Tatrin; Manongga, Daniel HF; Sediyono, Eko; Prasetyo, Sri Yulianto Joko; Huizen, Roy Rudolf
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26683

Abstract

In the field of object classification, identification based on object variations is a challenge in itself. Variations include shape, size, color, and texture, these can cause problems in recognizing and distinguishing objects accurately. The purpose of this research is to develop a classification method so that objects can be accurately identified. The proposed classification model uses Voting and Combined Classifier, with Random Forest, K-NN, Decision Tree, SVM, and Naive Bayes classification methods. The test results show that the voting method and Combined Classifier obtain quite good results with each of them, ensemble voting with an accuracy value of 92.4%, 78.6% precision, 95.2% recall, and 86.1% F1-score. While the combined classifier with an accuracy value of 99.3%, a precision of 97.6%, a recall of 100%, and a 98.8% F1-score. Based on the test results, it can be concluded that the use of the Combined Classifier and voting methods is proven to increase the accuracy value. The contribution of this research increases the effectiveness of the Ensemble Learning method, especially the voting ensemble method and the Combined Classifier in increasing the accuracy of object classification in image processing.
GLCM-Based Feature Combination for Extraction Model Optimization in Object Detection Using Machine Learning Kurniati, Florentina Tatrin; Sembiring, Irwan; Setiawan, Adi; Setyawan, Iwan; Huizen, Roy Rudolf
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 4 (2023): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i4.27842

Abstract

In the era of modern technology, object detection using the Gray Level Co-occurrence Matrix (GLCM) extraction method plays a crucial role in object recognition processes. It finds applications in real-time scenarios such as security surveillance and autonomous vehicle navigation, among others. Computational efficiency becomes a critical factor in achieving real-time object detection. Hence, there is a need for a detection model with low complexity and satisfactory accuracy. This research aims to enhance computational efficiency by selecting appropriate features within the GLCM framework. Two classification models, namely K-Nearest Neighbours (K-NN) and Support Vector Machine (SVM), were employed, with the results indicating that K-Nearest Neighbours (K-NN) outperforms SVM in terms of computational complexity. Specifically, K-NN, when utilizing a combination of Correlation, Energy, and Homogeneity features, achieves a 100% accuracy rate with low complexity. Moreover, when using a combination of Energy and Homogeneity features, K-NN attains an almost perfect accuracy level of 99.9889%, while maintaining low complexity. On the other hand, despite SVM achieving 100% accuracy in certain feature combinations, its high or very high complexity can pose challenges, particularly in real-time applications. Therefore, based on the trade-off between accuracy and complexity, the K-NN model with a combination of Correlation, Energy, and Homogeneity features emerges as a more suitable choice for real-time applications that demand high accuracy and low complexity. This research provides valuable insights for optimizing object detection in various applications requiring both high accuracy and rapid responsiveness.
Optimization of Vehicle Detection at Intersections Using the YOLOv5 Model Wiguna, I Wayan Adi Artha; Huizen, Roy Rudolf; Pradipta, Gede Angga
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 10 No. 4 (2024): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v10i4.29309

Abstract

This study aims to analyze and evaluate the performance of the YOLOv5 model in detecting vehicles at intersections to optimize traffic flow. The methods used in this research include training the YOLOv5 model with traffic datasets collected from various intersections and optimizing hyperparameters to achieve the best detection accuracy. The study results show that the optimized YOLOv5 model can detect multiple types of vehicles with high accuracy. The model achieved a detection accuracy of 85.47% for trucks, 87.12% for pedestrians, 86.54% for buses, 77.20% for cars, 80.48% for motorcycles, and 78.80% for bicycles. Significant improvements in detection performance were achieved compared to the default model. This research concludes that the optimization of the YOLOv5 model is effective in improving vehicle detection accuracy at intersections. Implementing this optimized model can significantly contribute to traffic management, reduce congestion, and improve road safety. It is expected that the implementation of this technology can be more widely applied for more efficient traffic management in various major cities.
Klasifikasi Penyakit Ulkus Kaki menggunakan Metode Pretrained Convolutional Neural Network Yoga, I Gede Dian Permana; Pradipta, Gede Angga; Huizen, Roy Rudolf
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 11, No 2 (2025): Volume 11 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v11i2.91721

Abstract

Ulkus kaki diabetik merupakan salah satu komplikasi berat pada penderita diabetes yang, jika tidak ditangani secara dini dan tepat, dapat menyebabkan infeksi, amputasi, bahkan kematian. Tantangan utama dalam penanganannya terletak pada proses diagnosis dan klasifikasi yang masih mengandalkan pengamatan visual secara manual oleh tenaga medis, yang sering kali bersifat subjektif dan tidak konsisten. Untuk menjawab permasalahan ini, kecerdasan buatan (AI) mulai dimanfaatkan dalam dunia medis, khususnya melalui analisis citra medis digital. AI bekerja dengan mengolah data berupa gambar luka dan mengenali pola visual tertentu menggunakan algoritma pembelajaran mendalam (deep learning) seperti Convolutional Neural Network (CNN), sehingga mampu mendeteksi kondisi luka secara lebih akurat. Penelitian ini bertujuan membangun model klasifikasi ulkus kaki dengan memanfaatkan arsitektur CNN yang telah dilatih sebelumnya (pretrained model) dan ditingkatkan performanya melalui proses fine-tuning. Tiga jenis arsitektur CNN yang digunakan yaitu MobileNet, VGG16, dan ResNet50, yang kemudian dikombinasikan dengan algoritma boosting seperti XGBoost dan AdaBoost untuk meningkatkan hasil klasifikasi. Dataset yang digunakan berupa citra digital luka ulkus kaki yang telah diproses melalui teknik peningkatan kualitas gambar dan seleksi fitur. Hasil evaluasi menunjukkan bahwa kombinasi MobileNet dengan XGBoost menghasilkan kinerja terbaik dengan tingkat akurasi 89%, disusul oleh VGG16 yang dikombinasikan dengan XGBoost dengan akurasi 86%. Temuan ini menunjukkan bahwa model yang dikembangkan memiliki potensi besar sebagai alat bantu diagnosis berbasis AI yang cepat, objektif, dan akurat dalam mendukung proses klinis dan mengurangi risiko komplikasi pada pasien diabetes.
Sistem Deteksi Gangguan Aliran Air Otomatis Menggunakan IoT dan Aplikasi Android: Studi Kasus di Desa Gobleg, Buleleng Susila, I Made Darma; I Made Liandana; Dandy Pramana Hostiadi; Yohanes Priyo Atmojo; Roy Rudolf Huizen; Gede Angga Pradipta; Putu Desiana Wulaning Ayu
WIDYABHAKTI Jurnal Ilmiah Populer Vol. 8 No. 1 (2025): Nopember
Publisher : Direktorat Penelitian, Pengabdian Masyarakat, dan HKI Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/widyabhakti.v8i1.874

Abstract

Pemantauan aliran air secara real-time pada jaringan distribusi pipa menjadi aspek krusial dalam menjamin ketersediaan air bersih bagi masyarakat, khususnya di daerah pedesaan. Pelaksanaan kegiatan pengabdian kepada masyarakat (PKM) yang telah dilakukan dan merupakan hilirisasi dari pelaksanan penelitian, mengembangkan rancang bangun sistem monitoring berbasis Internet of Things (IoT) untuk mendeteksi keberadaan aliran air pada pipa utama yang mensuplai kebutuhan air warga di Desa Gobleg. Sistem ini mengintegrasikan tiga jenis sensor, yaitu pressure sensor, water flow sensor dan contactless water level sensor, yang dipasang pada beberapa titik kritis jaringan pipa. Data dari sensor dikirimkan secara periodik melalui modul komunikasi GSM menggunakan protokol MQTT ke server pusat. Aplikasi Android dikembangkan untuk menampilkan status aliran air secara langsung dan memberikan notifikasi ketika ketiga sensor secara simultan tidak mendeteksi adanya air, yang mengindikasikan potensi kebocoran atau gangguan distribusi. Hasil pengujian menunjukkan sistem mampu mendeteksi kondisi abnormal dengan tingkat akurasi 95% dan memberikan notifikasi dalam waktu kurang dari 10 detik sejak kejadian terdeteksi. Sistem ini diharapkan dapat menjadi solusi efektif dan terjangkau untuk pengawasan distribusi air di wilayah pedesaan.