Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : EDUMATIC: Jurnal Pendidikan Informatika

Analisis Pemain Terbaik Sepak Bola dengan menggunakan Algoritma K-Means Wardhana, Faviola Proba; Winarno, Sri
Jurnal Pendidikan Informatika (EDUMATIC) Vol 8 No 2 (2024): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v8i2.27105

Abstract

The selection of players in soccer is crucial for developing strategies in matches. It serves as a decision support system that can be used to choose the starting line-up. The data for this research was obtained from the official and reliable website of Liga 1 Indonesia for the 2023 season. This study aims to analyze the top soccer players using the K-means algorithm based on their statistical performance throughout the 2023 Liga 1 Indonesia season. Data collection for each player included their percentage of appearances in the starting line-up. We used the K-means algorithm, which helps identify patterns and cluster players based on statistical metrics from the matches, such as the number of goals, assists, and other physical statistics across various player positions. The data comprised 197 players competing in Liga 1 2023. Our findings reveal that 62 players belong to Cluster 1 out of the total 197 analyzed. These players exhibited the best statistics and could be potential options for Liga 1 coaching staff to recruit or sign in order to strengthen their teams for the next season. Our research indicates that the players in this cluster demonstrated outstanding performance, helping coaches identify categories such as "efficient strikers" or "strong defenders." Therefore, this study can assist coaches or managers in selecting the most suitable players to meet the team’s needs for the upcoming season.
Implementasi BERT dan Cosine Similarity untuk Rekomendasi Dosen Pembimbing berdasarkan Judul Tugas Akhir Sabilillah, Ferris Tita; Winarno, Sri; Abiyyi, Ryandhika Bintang
Jurnal Pendidikan Informatika (EDUMATIC) Vol 8 No 2 (2024): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v8i2.27791

Abstract

Challenges in completing final projects, which often contribute to delays in student graduation, are frequently due to a mismatch between students' research topics and the expertise of their supervisors. Therefore, a method is needed to address this misalignment in the final project process. This study aims to implement a Bidirectional Encoder Representations from Transformers (BERT) model and cosine similarity to recommend supervisors based on students' final project titles. The research dataset includes 3,723 research titles collected through web scraping from Google Scholar and ResearchGate, representing the expertise of 63 lecturers in the Informatics Engineering Program at Universitas Dian Nuswantoro. Data processing includes preprocessing to generate embedding vectors from lecturers' research titles, which are then compared with students' final project titles. Our findings indicate that the developed recommendation model achieves an accuracy of 90% in identifying relevant supervisors based on topic alignment between students' final project titles and lecturers' areas of expertise, as reflected in their publications. This result can make a significant contribution to supporting students in completing their final projects more efficiently and improving the quality of academic supervision by facilitating more appropriate supervisor selection.
DiabTrack: Sistem Prediksi Dini Diabetes Melitus Tipe 2 berbasis Web menggunakan Algoritma K-Nearest Neighbors Pangestu, Aditya Gilang; Winarno, Sri; Nugraha, Adhitya; Muttaqin, Almas Najiib Imam
Jurnal Pendidikan Informatika (EDUMATIC) Vol 9 No 1 (2025): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v9i1.29691

Abstract

Type 2 diabetes mellitus is a chronic disease that is often not detected early enough, increasing the risk of serious complications. Based on this, early detection of this disease is very important to reduce its negative impact. This research aims to develop the DiabTrack system, a web-based prediction system using the K-Nearest Neighbors (KNN) algorithm. This type of research is development research using the Rapid Application Development (RAD) model, including the requirements planning, design workshop, and implementation stages. The dataset used comes from Kaggle, containing 53,000 samples and 8 features. The model is trained using the KNN algorithm and the SMOTE technique to balance the data. Evaluation results show that the KNN model achieves an accuracy of 99.17%, a recall of 100%, and an F1-score of 94%, making it the chosen algorithm for the DiabTrack website. Additionally, Black Box testing results indicate that all features in the DiabTrack system function as expected, helping the public monitor their health conditions while serving as an initial analysis tool for medical professionals.
Pendekatan Multi-Input dalam Deteksi Kanker Kulit: Implementasi EfficientNetV2-B2 dan LightGBM Ibad, M. Azka Khoirul; Winarno, Sri
Jurnal Pendidikan Informatika (EDUMATIC) Vol 9 No 1 (2025): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v9i1.29771

Abstract

Skin cancer is one of the types of cancer with a high prevalence rate, so early detection is very important to increase the chances of recovery. This study aims to develop a skin cancer detection model that combines image data and tabular data using EfficientNetV2-B2 for image feature extraction and LightGBM for tabular data prediction estimation. The ISIC 2024 dataset used consists of 401,059 images of skin lesions with tabular features, including age, gender, location, diameter, and shape of the lesions. Tabular data is processed with normalization and encoding to avoid bias. Image data is also processed with augmentation techniques from kerascv. This multi-input model combines image and tabular features using concatenation techniques, with a dense layer as the final output. Our findings show that the model's accuracy and AUC value reached 96% and 98%, with success in handling class imbalance using undersampling and oversampling techniques. This study shows that the combination of images and tabular data increases the accuracy of skin cancer detection by 2%, compared to conventional CNN models, which only achieve an accuracy of around 94%. Moreover, this model offers better computational efficiency compared to conventional CNN models. The main contribution of this research is the use of multi-input that complements visual information with clinical data for more accurate and efficient skin cancer detection.