Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : UNEJ e-Proceeding

On the edge r-dynamic chromatic number of some related graph operations Novian Nur Fatihah; Arika Indah Kriatiana; Ika Hesti Agustin; Dafik Dafik
UNEJ e-Proceeding 2016: Proceeding The 1st International Basic Science Conference
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

All graphs in this paper are simple, nontrivial, connected and undirected. By an edge proper k-coloring of a graph G, we mean a map c : E(G) ! S, where jSj = k, such that any two adjacent edges receive different colors. An edge r-dynamic k-coloring is a proper k-coloring c of G such that jc(N(uv))j min (r; d(u) + d(v) ???? 2) for each edge uv in V (G), where N(uv) is the neighborhood of uv and c(S) = c(uv) : uv2S for an edge subset S. The edge r-dynamic chromatic number, written as r(G), is the minimum k such that G has an edge r-dynamic k-coloring. In this paper, we will determine the edge coloring r-dynamic number of a comb product of some graph, denote by G D H. Comb product of some graph is a graph formed by two graphs G and H, where each edge of graph G is replaced by which one edge of graph H.
The Rainbow (1,2)-Connection Number of Exponential Graph and It’s Lower Bound Gembong A. W.; Dafik Dafik; Ika Hesti Agustin; Slamin Slamin
UNEJ e-Proceeding 2016: Proceeding The 1st International Basic Science Conference
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Let G = (V, E) be a simple, nontrivial, finite, connected and undirected graph. Let c be a coloring c : E(G) → {1, 2, . . . , k}, k ∈ N. A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph G is rainbow connected if there exists a rainbow u − v path for every two vertices u and v of G. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of k colors required to edge color the graph such that the graph is rainbow connected. Furthermore, for an l-connected graph G and an integer k with 1 ≤ k ≤ l, the rainbow k-connection number rck(G) of G is defined to be the minimum number of colors required to color the edges of G such that every two distinct vertices of G are connected by at least k internally disjoint rainbow paths. In this paper, we determine the exact values of rainbow connection number of exponential graphs, namely Path of ladder as exponent, Cycle of Ladder as exponent, Cycle of Triangular Ladder as exponent, Cycle of Complete as exponent. We also proved that rc2(G) = diam(G) + 1.
Construction of Super H-Antimagicness of Graph by Uses a Partition Technique with Cancelation Number Rafiantika Megahnia Prihandini; Dafik Dafik; Ika Hesti Agustin
UNEJ e-Proceeding 2016: Proceeding The 1st International Basic Science Conference
Publisher : UPT Penerbitan Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract—The graph operation is one method to construct a new graph by applying the operation to two or more graph. One of graph operation is amalgamation, let {Hi} be a finite collection of nontrivial, simple and undirected graphs and let each Hi has a fixed vertex vj called a terminal. The terminal of graph operation is formed by taking all the Hi’s and identifying their terminal. When Hi are all isomorphic graphs, for any positif integer n, we denote such amalgamation by G = Amal(H, v, n), where n denotes the number of copies of H and v is the terminal. The graph G is said to be an (a, d)-H-antimagic total graph if there exist a bijective function f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} such that for all subgraphs isomorphic to H, the total H-weights W(H) = ∑v∈V (H) f(v) + ∑e∈E(H) f(e) form an arithmetic sequence {a, a + d, a + 2d, ..., a + (n − 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. An (a, d)-H-antimagic total labeling f is called super if the smallest labels appear in the vertices. In this paper, we study a super (a, d)-H antimagic total labeling of connected of graph G = Amal(H, Ps+2, n) by uses a partition technique with cancelation number. The result is graph G = Amal(H, Ps+2, n) admits a super(a, d)-H antimagic total labeling for almost feasible difference d.