Claim Missing Document
Check
Articles

Found 20 Documents
Search

On The Local Metric Dimension of Line Graph of Special Graph Marsidi, Marsidi; Dafik, Dafik; Hesti Agustin, Ika; Alfarisi, Ridho
CAUCHY Vol 4, No 3 (2016): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (917.503 KB) | DOI: 10.18860/ca.v4i3.3694

Abstract

Let G be a simple, nontrivial, and connected graph.  is a representation of an ordered set of k distinct vertices in a nontrivial connected graph G. The metric code of a vertex v, where , the ordered  of k-vector is representations of v with respect to W, where  is the distance between the vertices v and wi for 1≤ i ≤k.  Furthermore, the set W is called a local resolving set of G if  for every pair u,v of adjacent vertices of G. The local metric dimension ldim(G) is minimum cardinality of W. The local metric dimension exists for every nontrivial connected graph G. In this paper, we study the local metric dimension of line graph of special graphs , namely path, cycle, generalized star, and wheel. The line graph L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common.
On The Metric Dimension of Some Operation Graphs Marsidi, Marsidi; Agustin, Ika Hesti; Dafik, Dafik; Alfarisi, Ridho; Siswono, Hendrik
CAUCHY Vol 5, No 3 (2018): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (782.001 KB) | DOI: 10.18860/ca.v5i3.5331

Abstract

Let  be a simple, finite, and connected graph. An ordered set of vertices of a nontrivial connected graph  is  and the -vector  represent vertex  that respect to , where  and  is the distance between vertex  and  for . The set  called a resolving set for  if different vertex of  have different representations that respect to . The minimum of cardinality of resolving set of G is the metric dimension of , denoted by . In this paper, we give the local metric dimension of some operation graphs such as joint graph , amalgamation of parachute, amalgamation of fan, and .
On the Local Adjacency Metric Dimension of Generalized Petersen Graphs Marsidi, Marsidi; Dafik, Dafik; Agustin, Ika Hesti; Alfarisi, Ridho
CAUCHY Vol 6, No 1 (2019): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v6i1.6487

Abstract

The local adjacency metric dimension is one of graph topic. Suppose there are three neighboring vertex , ,  in path . Path  is called local if  where each has representation: a is not equals  and  may equals to . Let’s say, .  For an order set of vertices , the adjacency representation of  with respect to  is the ordered -tuple , where  represents the adjacency distance . The distance  defined by 0 if , 1 if  adjacent with , and 2 if  does not adjacent with . The set  is a local adjacency resolving set of  if for every two distinct vertices ,  and  adjacent with y then . A minimum local adjacency resolving set in  is called local adjacency metric basis. The cardinality of vertices in the basis is a local adjacency metric dimension of , denoted by . Next, we investigate the local adjacency metric dimension of generalized petersen graph.
On Rainbow Vertex Antimagic Coloring of Graphs: A New Notion Marsidi, Marsidi; Agustin, Ika Hesti; Dafik, Dafik; Kurniawati, Elsa Yuli
CAUCHY Vol 7, No 1 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i1.12796

Abstract

All graph in this paper are simple, finite, and connected. Let  be a labeling of a graph . The function  is called antimagic rainbow edge labeling if for any two vertices  and , all internal vertices in path  have different weight, where the weight of vertex is the sum of its incident edges label. The vertex weight denoted by  for every . If G has a antimagic rainbow edge labeling, then  is a antimagic rainbow vertex connection, where the every vertex is assigned with the color . The antimagic rainbow vertex connection number of , denoted by , is the minimum colors taken over all rainbow vertex connection induced by antimagic rainbow edge labeling of . In this paper, we determined the exact value of the antimagic rainbow vertex connection number of path ( ), wheel ( ), friendship ( ), and fan ( ).
PEMANFAATAN LUBANG RESAPAN BIOPORI SEBAGAI TEKNOLOGI TEPAT GUNA RAMAH LINGKUNGAN OLEH KELOMPOK TANI KOPI DESA GARAHAN KECAMATAN SILO KABUPATEN JEMBER Setyaningsih Yuanita Wulandari; Endra Priawasana; Marsidi Marsidi
Dedication : Jurnal Pengabdian Masyarakat Vol 1 No 2 (2017): DEDICATION: Jurnal Pengabdian Masyarakat
Publisher : LPPM IKIP Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Desa Garahan di Kabupaten Jember merupakan salah satu daerah yang memiliki masyarakat pendidikan rendah dan miskin. Konsep program pengabdian ini adalah memberikan program pemberdayaan kelompok tani dengan pemanfaatan sumber daya alam di desa Garahan dengan cara pembuatan lubang infiltrasi pori-pori tanah atau tanah subur. Lubang penyerapan pori-pori bio sebagai salah satu teknologi ramah lingkungan digunakan untuk mempercepat infiltrasi air hujan, mengatasi sampah organik, mencegah genangan air dan banjir, mencegah erosi, dan tanah longsor, meningkatkan pasokan air, menciptakan lingkungan hidup yang nyaman dan berkelanjutan, dan lingkungan hidup yang berkelanjutan. , dan pengembangan agribisnis daerah perkotaan. Metode yang digunakan adalah dosen atau konseling, latihan atau pelatihan, juga pendampingan dan evaluasi. Target output yang ingin dicapai dalam program ini diharapkan masyarakat miskin, terutama kelompok tani yang memiliki keterampilan dan kemampuan berinovasi dalam memanfaatkan sumber daya alam sehingga nantinya bisa membuka lapangan kerja baru. Inovasi teknologi ramah lingkungan dalam pembuatan lubang infiltrasi pori-pori bio diperlukan untuk bersaing dengan produk teknologi tepat guna lainnya dan produk teknologi tepat guna dari lubang infiltrasi bio pori ini diharapkan bisa menjadi produk unggulan lokal dan memiliki daya saing yang tinggi di pasaran, sehingga bisa meningkatkan kesejahteraan masyarakat desa Garahan.
PENGARUH PENERAPAN KURIKULUM TERHADAP MOTIVASI DAN MINAT BELAJAR SISWA DENGAN ANGKET SKALA LIKERT PADA MATEMATIKA Della Putri Anggraeni; Indah Rahayu Panglipur; Marsidi Marsidi
Prismatika: Jurnal Pendidikan dan Riset Matematika Vol 3 No 2 (2021): Prismatika: Jurnal Pendidikan dan Riset Matematika
Publisher : Program Studi Pendidikan Matematika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33503/prismatika.v3i2.1280

Abstract

Pengaruh penerapan kurikulum terhadap motivasi dan minat belajar siswa dengan angket skali (skala likert) pada mata pelajaran matematika di SMK Trunojoyo Jember, penelitian ini dilatar belakangi kurangnya motivasi dan minat belajar siswa yang ada di SMK Trunojoyo Jember terutama pada kelas IX BDP setelah menerapkan Kurikulum 2013. Penelitian ini bertujuan untuk mengetahuai ada atau tidaknya pengaruh penerapan Kurikulum 2013 terhadap motivasi dan minat belajarsiswa. Penelitian dilakukan di SMK Trunojoyo Jember. Variabel yang digunakan dalam penelitian ini yaitu, Kurikulum 2013(Y), Motivasi Belajar (X1), dan Minat Belajar (X2). Penelitianini termasuk penelitianex post facto dengan jenis penelitian kuantitatif. Dalam penelitian ini penulis menggunakan rancangan penelitian Pendekatan Paradigma Berganda. Berdasarkan hasil analisis data dan pembahasan yang telah diuraikan, maka diperoleh kesimpulannya dengan menggunakan Uji F dengan perhitungan manual, didapatkan nilai Fhitung lebih besar dari nilai Ftabel atau 15,10 > 3,35 yang berarti Ho ditolak, sehingga dapat disimpulkan bahwa ada pengaruh penerapan Kurikulum 2013 terhadap motivasi serta minat belajar siswa.
The Local Antimagic On Disjoint Union of Some Family Graphs Marsidi Marsidi; Ika Hesti Agustin
Jurnal Matematika MANTIK Vol. 5 No. 2 (2019): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (274.121 KB) | DOI: 10.15642/mantik.2019.5.2.69-75

Abstract

A graph in this paper is nontrivial, finite, connected, simple, and undirected. Graph consists of a vertex set and edge set. Let u,v be two elements in vertex set, and q is the cardinality of edge set in G, a bijective function from the edge set to the first q natural number is called a vertex local antimagic edge labelling if for any two adjacent vertices and , the weight of is not equal with the weight of , where the weight of (denoted by ) is the sum of labels of edges that are incident to . Furthermore, any vertex local antimagic edge labelling induces a proper vertex colouring on where is the colour on the vertex . The vertex local antimagic chromatic number is the minimum number of colours taken over all colourings induced by vertex local antimagic edge labelling of . In this paper, we discuss about the vertex local antimagic chromatic number on disjoint union of some family graphs, namely path, cycle, star, and friendship, and also determine the lower bound of vertex local antimagic chromatic number of disjoint union graphs. The chromatic numbers of disjoint union graph in this paper attend the lower bound.
Michaelis-Menten Models with Constant Harvesting of Restricted Prey Populations Minimum Place and Amount Capacity Aswar Anas; Marsidi
Jurnal Matematika MANTIK Vol. 7 No. 2 (2021): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15642/mantik.2021.7.2.107-114

Abstract

Food chain modeling is currently developing rapidly. The ecosystem is protected from the chain of eating and eating processes. All living things need each other, but if the process of eating them is not balanced, then the extinction of living things will occur. One of them is the prey and predator model that serves as a balancer in the food chain system. The Michaelis-Menten model is a prey-predator model that essentially prevents prey extinction. The problem is how to keep the prey from becoming extinct but with maximum harvesting in one place and the minimum amount of prey at the right time. The method used to overcome this problem is to add two new variables to the Michaelis-Menten model, namely the minimum number of prey and the capacity of the place to be occupied. It is seen that the system will be in equilibrium if the predator mortality rate is large so that the prey is kept from extinction until harvesting. In addition, the right time for good breeding can also be determined. From this model, it is found that the right time for harvesting so that prey extinction does not occur is
Developing A Secure Cryptosystem with Rainbow Vertex Antimagic Coloring of Cycle Graph Marsidi Marsidi
Jurnal Matematika MANTIK Vol. 8 No. 2 (2022): September - November
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15642/mantik.2022.8.2.78-88

Abstract

An edge labeling of graph G is a function g from the edge set of graph G to the first natural numbers up to the number of the edge set. Graph G admits a rainbow vertex antimagic coloring if, for any two vertices, there is a path with different colors of all internal vertices. The vertex color of graph G is assigned by vertex weight. The vertex weight of graph G is obtained by summing all edge labels that incident with that vertex. The rainbow vertex antimagic connection number of graph G, denoted by rvac(G) is the smallest number of different colors induced by rainbow vertex antimagic coloring. In this research, we determine the upper bound of the rainbow vertex antimagic connection number (rvac)  on a cycle graph (Cn) and create a secured cryptosystem using a modified Affine Cipher based on rainbow vertex antimagic coloring.
IDENTIFIKASI PROSES BERPIKIR SISWA DALAM MEMECAHKAN MASALAH MATEMATIKA DITINJAU DARI PERBEDAAN GENDER Muhammad Kutbi Muhammad Kutbi; Eric Dwi Putra; Marsidi
Cartesian: Jurnal Pendidikan Matematika Vol. 2 No. 1 (2022): Cartesian Vol. 2 No. 1 November 2022
Publisher : Program Studi Pendidikan Matematika FIP UNHASY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1246.319 KB) | DOI: 10.33752/cartesian.v2i1.3333

Abstract

Penelitian ini bertujuan untuk mengidentifikasi proses berpikir siswa saat menyelesaikan masalah ditinjau dari perbedaan gender. Subyek pada penelitian ini yakni siswa kelas VIII A,B yang terdiri dari empat siswa laki-laki dan empat siswa perempuan dengan kategori kemampaun tinggi dan sedang . Metode penelitian yang digunakan yaitu deskriptif kualitatif. Teknik pengumpulan data yang digunakan yaitu soal tes dan wawancara. Kemudian data dianalisis menggunakan analisis data kualitatif yang mencakup reduksi data, penyajian data dan penarikan kesimpulan. Berdasarkan hasil analisis data, disimpulkan bahwa siswa laki-laki berkemampuan tinggi memiliki tipe berpikir konseptual, sedangkan proses berpikir siswa perempuan berkemampuan tinggi memeliki tipe berpikir konseptual. Kemudian hasil analisis data siswa laki-laki berkemampuan rendah memiliki tipe berpikir konseptual, sedangkan proses berpikir siswa perempuan berkemampuan rendah memeliki tipe berpikir tidak terdefinisikan.