Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : EXPLORE

CONTENT BASED IMAGE RETRIEVAL MENGGUNAKAN TAMURA TEXTURE FITUR PADA KAIN SONGKET KHAS LOMBOK wahyuni, wenti ayu; Utami, Ema; Hartanto, Anggit Dwi
Jurnal Explore VOL 11, NO 2 (2021)
Publisher : STMIK Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35200/explore.v11i2.440

Abstract

Information Retrieval adalah bidang ilmu yang berhubungan dengan representasi, penyimpanan, dan akses ke item informasi. Pada dunia nyata, implementasi dari information retrieval dapat ditemukan pada mesin pencarian. Proses pencarian biasanya banyak menggunakan query berupa teks, Namun Banyak kelemahan yang ditemukan pada pencarian menggunakan teks. Content based image retrieval (CBIR) merupakan proses untuk melakukan pencarian citra digital. Prinsip dasar dari teknik CBIR adalah penggunaan algoritma analisa gambar untuk mengekstrak angka secara otomatis pada atribut gambar disuatu waktu pada database gambar. Tujuan penelitian ini yaitu membangun sistem CBIR dalam pencarian kain songket lombok dengan menggunakan metode ekstraksi fitur tamura dalam ekstraksi fitur citra gambar. Data yang digunakan berjumlah kurang lebih 450 kain songket. Aplikasi yang digunakan pada penelitian ini adalah aplikasi dari LIRE. Database yang digunakan berasal dari data yang dikumpulkan langsung. Penerapan metode tamura menunjukkan hasil yang relevan karena dapat menemukan 9 gambar yang relevan dari 12 gambar.
PENGENALAN EKSPRESI WAJAH MENGGUNAKAN DEEP CONVOLUTIONAL NEURAL NETWORK Adiatma, Biva Candra Lutfi; Utami, Ema; Hartanto, Anggit Dwi
Jurnal Explore VOL 11, NO 2 (2021)
Publisher : STMIK Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35200/explore.v11i2.478

Abstract

Pengenalan ekspresi wajah menjadi salah satu bidang penelitian aktif dalam beberapa tahun terakhir. Pendekatan yang ada saat ini sebagian besar menggunakan metode tradisional seperti SIFT, HOG, LBP, yang diikuti oleh klasifikasi yang dilatih dari data gambar atau video. Sebagian besar mendapatkan hasil yang cukup baik ketika menggunakan data citra yang terkontrol , tetapi tidak bekerja dengan baik pada kumpulan data yang lebih sulit dimana terdapat banyak bagian wajah dengan banyak variasi gambar. Banyak penelitian yang telah mengusulkan kerangka kerja untuk pengenalan ekspresi wajah menggunakan metode deep learning. Meskipun kinerjanya lebih baik, masih banyak ruang untuk perbaikan. Dalam penelitian ini kami mengusulkan pendekatan menggunakan metode deep learning berbasis Deep Convolutional Neural Network (DCNN) dengan variasi parameter yang berbeda. Hasil yang didapatkan setelah 5 kali percobaan training pada dataset FER2013 dengan 4 optimizer berbeda yaitu optimizer Nadam mendapatkan hasil yang sama baiknya dengan Adam dengan akurasi 83%, kemudian diikuti Adamax dengan nilai akurasi 82%, dan optimizer terkahir dengan akurasi 74% adalah SGD. Hasil prediksi terbaik diperoleh ketika menggunakan optimizer Nadam dengan akurasi 83%.