Claim Missing Document
Check
Articles

Found 27 Documents
Search

Implementasi Algoritma Convolutional Neural Network (Resnet-50) untuk Klasifikasi Kanker Kulit Benign dan Malignant: Implementation of Convolutional Neural Network Algorithm (ResNet-50) for Benign and Malignant Skin Cancer Classification Gusti, Gogor Putra Hafi Puja; Haerani, Elin; Syafria, Fadhillah; Yanto, Febi; Gusti, Siska Kurnia
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1398

Abstract

Kulit sebagai organ terluar yang menutupi seluruh bagian tubuh manusia rentan terhadap berbagi penyakit, salah satunya kanker kulit. Penggunaan teknologi malignant, khususnya Convolutional Neural Network (CNN) diangkat menjadi topik penelitian karena kemampuan CNN untuk secara otomatis mengenali fitur penting dalam klasifikasi citra medis kanker kulit. Oleh karena itu dilakukan penelitian pengklasifikasian penyakit kanker kulit benign (jinak) dan malignant (ganas) menggunakan algoritma CNN arsitektur ResNet-50 dengan dataset berupa 5000 data latih kanker kulit benign dan 4600 data latih kanker kulit malignant.Model CNN yang telah dirancang dengan epoch 50 menggunakan optimizer Adam dan batch size sebesar 54 serta melibatkan beberapa teknik augmentasi data guna meningkatkan keragaman dataset untuk kemudian model hasil perancangan diimplementasikan ke dalam tampilan sebuah website dengan menggunakan Flask sebagai kerangka kerja yang menghubungkan antara model deep learning dan website agar bisa diakses oleh pengguna. Metode pengujian blackbox dilakukan demi memastikan sistem dapat melakukan klasifikasi kanker kulit melalui input berupa citra medis kedalam 2 kelas yaitu benign dan malignant dengan baik serta didapatkan hasil akurasi model sebesar 94,88 % dan loss sebesar 13,24%.
Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor Yenggi Putra Dinata; Yusra; Fikry, Muhammad; Yanto, Febi; Cynthia, Eka Pandu
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1904

Abstract

The development of online media, particularly through social media platforms like Twitter, has created a vast stage for various activities, including political campaigns and public opinion on public figures. When information technology advances rapidly, public opinion can be conveyed without time constraints through social media. Twitter, with its character limitations and the use of hashtags by users, is considered easier to gather information about existing opinions and sentiments. Currently, social media is widely used for communication and making friends, but also for other activities. Advertising products, buying and selling anything, including advertising political parties and campaigning for members of Congress or presidential candidates. This research focuses on sentiment analysis towards Puan Maharani, the Speaker of the Indonesian House of Representatives (DPR RI), using data from the social media platform Twitter. Twitter, as a platform that allows users to express opinions in a concise format, is used as the main source of information in this research. The K-Nearest Neighbor algorithm for sentiment analysis technique is utilized to classify individual tweets into positive or negative categories regarding views on Puan Maharani. The methods used in this research include data crawling, labeling, and data preprocessing, which involve case folding, cleaning, tokenizing, negation handling, normalization, stopword removal, and stemming. For the classification process, the K-Nearest Neighbor method, feature weighting (TF-IDF), and feature selection (thresholding) are employed, with a threshold value of 0.001. The data used comprises 9,000 tweets in the Indonesian language. The results of the testing conducted in the K-Nearest Neighbor method, using confusion matrices, with 6 different values of K (3, 5, 7, 9, 11, 13), with comparison mechanisms of 90:10, 80:20, and 70:30 achieved the highest accuracy of 90.00% with K = 11 from the comparison using the 90:10 ratio
Classification of Palm Oil Ripeness Level using DenseNet201 and Rotational Data Augmentation Nabyl Alfahrez Ramadhan Amril; Yanto, Febi; Elvia Budianita; Suwanto Sanjaya; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1937

Abstract

Indonesia is a country in Southeast Asia with the largest palm oil production in the world. Based on Indonesian Central Statistics Agency data, in 2022 Indonesia produced 46,8 million Tons of Crude Palm Oil (CPO). To produce a high-quality oil, palm oil fruit must be harvested in an optimal condition. But, even a experienced and trained person found it difficult to identify whether the fruit is ripe or raw. In this research theres two type of classification which is ripe and raw, this is because palm oil milling factory only accept pure ripe palm oil fruit and not half ripe or almost ripe. The data that is used in this reseacrh was collected from two sources, the first source is from https://www.kaggle.com/datasets/ahmadfathan/kematangansawit and the second source was collected manually by going to palm oil plantation. The total of data that is used for this research is 1000 data and 1000 augmented data. Dense Convolutional Network (DenseNet) that is used in this research is a CNN architecture that was first introduced in 2017. Compared to DenseNet121 and DenseNet169, DenseNet201 is proven to have a higher level of accuracy. The 90:10 data scheme succeeded in getting the highest accuracy with a total accuracy of 97.50% with a learning rate of 0.001 and a dropout of 0.01
Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit Masaugi, Fathan Fanrita; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1938

Abstract

Palm oil is an important commodity in Indonesia, especially as Indonesia is the highest palm oil exporting country in the world. Ripe palm fruit is marked by a change in color of the fruit from black to reddish yellow. Apart from that, immature palm fruit has a negative and significant effect on CPO production. The data collection process was carried out by directly taking pictures of palm fruit on oil palm plantations and data obtained from Kaggle. The total amount of data is 1000 images and 1000 data resulting from flip augmentation. The Xception algorithm is an algorithm in deep learning which stands for Extreme version of Inception. This combination was then proven to provide better accuracy in classifying images from a dataset. The optimizer used is the optimizer in TensorFlow, namely Adam (Adaptive Moment Estimation) using learning rate and dropout values. Images of mature and immature palm oil were classified using the Xception algorithm with augmented and without augmented data. In addition, experiments were carried out by changing the parameter values ??of learning rate to 0.1, 0.01, 0.001 and dropout to 0.1, 0.01, 0.001. It was found that the data division was (90;10) with the best accuracy reaching 95%. Test parameters carried out by trialling were proven to increase accuracy when compared to without using parameters and flip augmentation. The best accuracy of the Xception model is 95% on augmented data with a learning rate of 0.001 and a dropout of 0.1.
Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit Mazdavilaya, T Kaisyarendika; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1940

Abstract

Indonesia is a country that has very abundant palm oil plantations and makes palm oil one of the largest export commodities in Indonesia. Fruit maturity on oil palms has a significant influence on palm oil and kernel production. The level of ripeness in palm oil fruit can affect several contents in it, such as tocopherol content, yield and FFA. The classification will be divided into 2 classes, namely between ripe and immature fruit with data on 500 images of ripe fruit and 500 images of immature fruit, data taken from the Kaggle site and private gardens taken using a cellphone camera. The data that has been obtained is augmented which is useful for enriching the data to make it more abundant. Data augmentation uses zoom augmentation and makes the original 1000 data increase to 2000 data. The model used is VGG 16 which is part of deep learning. The existing dataset is then preprocessed, resized and rescaled, then divides the data into 3, namely train, test and valid data. After dividing the data, then carry out the classification process with VGG 16 and set the hyperparameters after that the model will learn with 20 epochs. The model will learn with 57 schemes to compare and find highest accuracy. After the model has finished learning, it is evaluated using a confusion matrix. The results obtained were that the 90:10 data division using data augmentation with a learning rate of 0.01 and a dropout of 0.001 obtained the best accuracy, reaching 93.8%.
Optimasi Pertanyaan Menggunakan Refined Query Dalam Sistem Tanya Jawab Kitab Hadis Wijaya, Andy Huang; Harahap, Nazruddin Safaat; Irsyad , Muhammad; Yanto, Febi
SATIN - Sains dan Teknologi Informasi Vol 10 No 1 (2024): SATIN - Sains dan Teknologi Informasi
Publisher : STMIK Amik Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33372/stn.v10i1.1116

Abstract

This research aims to enhance a Question-Answering System for Hadith texts by incorporating Refined Query techniques and Large Language Models (LLMs), specifically OpenAI's GPT-4. Utilizing a dataset of 62,169 Hadith from nine significant books, the study follows a comprehensive methodology that covers data collection, analysis and preprocessing, and the integration of LangChain and OpenAI's Chat Model for optimized querying. The evaluation of the system's performance was conducted through comparative analysis before and after the application of Refined Query, BERTScore for text quality, and user-based quality assessments. Results demonstrate that Refined Query significantly improves the system's capacity to produce accurate and contextually relevant responses. Implementing Refined Query not only enhanced answer precision but also facilitated the generation of responses where none were previously available. The average BERTScore of 0.80351 and the quality of user responses with an average score of 87.3% for the student test and 90.3% for the hadith expert test further validate the efficacy of the system. This research advances the domain of Islamic information systems by demonstrating the fruitful integration of advanced computational techniques with religious texts, offering a fundamental step towards better access to the understanding of Islamic jurisprudence.
Klasifikasi Sentimen Masyarakat di Twitter terhadap Puan Maharani dengan Metode Modified K-Nearest Neighbor Putra, Wahyu Eka; Fikry, Muhammad; Yusra; Yanto, Febi; Cynthia, Eka Pandu
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 6 No. 1 (2025): Januari
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Indonesia Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jimik.v6i1.1211

Abstract

This study aims to address the challenges in classifying sentiment on Twitter regarding Puan Maharani by implementing the Modified K-Nearest Neighbor (MK-NN) method, supplemented with feature weighting and feature selection techniques. This method is designed to improve accuracy by assigning higher weights to important features and reducing data dimensions to avoid overfitting. Data is collected using a crawling technique on Indonesian-language tweets, which are then manually labeled and processed through a preprocessing stage. The testing results using the modified K-Nearest Neighbor (MK-NN) method with confusion matrices show the model's performance at three different values of K (3, 5, and 7) and data ratios of 90:10, 80:20, and 70:30. With a 90:10 data ratio and K=3, the method achieved the highest accuracy of 89.0%. These results indicate that the combination of MK-NN and related techniques is highly effective in sentiment classification, offering an innovative solution to the limitations of conventional methods. These findings have potential applications in public opinion analysis, particularly for supporting data-driven strategic decision-making.
Sistem Kontrol Suhu Inkubator Telur Berasis Mikrokontroler MenggunakanFuzzy LogicdanPulse-Width Modulation Yanto, Febi; Afroni, Hallend
Jurnal Ilmu Komputer Vol 3 No 1 (2014): Jurnal Ilmu Komputer
Publisher : STMIK Hang Tuah Pekanbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33060/JIK/2014/Vol3.Iss1.18

Abstract

Abstrak –Inkubator merupakan alat untuk melakukan pemantuan pengeraman menggantikan fungsi dari induk ayam ataupun unggas lainya.Untuk pengeraman induk ayam ataupun unggas lainya membutuhkan suhu ± 36 – 40 derajat celcius.Untuk menjaga suhu agar stabil antara 36 hingga 40 derajat celcius maka diperlukanlah sebuah kontrol yang mampu memenuhi kebutuhan inkubator tersebut. Dirancanglah sebuah alat kontrol suhu untuk inkubator telur sebagai pengganti induk ayam dengan berbasis mikrokontroler sebagai unit proses yang dibantu dengan fuzzy logic dan Pulse-Width Modulation (PWM). dengan menggandalkan sensor SHT11 sebagai pembaca suhu serta kipas dan elemen pemanas sebagai alat untuk menaikkan serta menurunkan suhu. Untuk perancangan, Fuzzy Logic beserta PWM diletakkan pada mikrokontroler sehingga mampu mengendalikan kerja elemen pemanas maupun kipas pendingin. Hasil yang didapat setelah pengujian menggunakan simulasi box yang berukuran 30 x 16 x 24, mikrokonroler yang menggunakan Fuzzy Logic serta PWM mampu mempertahankan suhu stabil antara 36 hingga 40 derajat celcius setelah alat bekerja dalam beberapa waktu.
RANCANG BANGUN APLIKASI MOBILE VOTE BERBASIS MOBILE MULTIPLATFORM Yanto, Febi; Dewi, Nurika
Jurnal Ilmu Komputer Vol 3 No 1 (2014): Jurnal Ilmu Komputer
Publisher : STMIK Hang Tuah Pekanbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33060/JIK/2014/Vol3.Iss1.19

Abstract

Abstrak – Pemungutan suara adalah jawaban yang paling tepat untuk mengambil keputusan berdasarkan tujuan ataupun maksud yang ingin di ambil jawabannya secara cepat, tepat dan berdasarkan keadaan yang sesungguhnya.Hanya saja, pemungutan suara yang saat ini biasa terjadi di masyarakat memiliki berbagai masalah, seperti kecurangan, lamanya proses, banyak nya biaya yang digunakan. Untuk itu dibangunlah sebuah aplikasi pemungutan suara yang mampu menyelesaikan masalah-masalah tersebut, seperti membangun aplikasi mobile vote, dan melihat banyaknya pengguna smartphone di masyarakat pada saat ini, juga memungkinkan pada penelitian ini dibangunlah sebuah aplikasi mobile vote berbasis mobile multiplatform. Aplikasi Mobile Multiplatform adalah aplikasi yang dapat berjalan pada banyak sistem operasai smartphone. Pada penelitian ini aplikasi mobile vote yang dibangun adalah aplikasi dengan pemrograman PHP dan beberapa SDK dari berbagai sistem operasi smartphone.Hasil dari pengujian yang dilakukan terhadap aplikasi yang dibangun menunjukan sistem telah berjalan dengan baik dan sesuai yang diharapkan.
Implementasi Fuzzy Sugeno Berbasis IoT untuk Peringatan Kualitas Air Akuarium Ikan Mas Koki Rahman, Muhammad Taufikur; Yanto, Febi; Haerani, Elin
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.627

Abstract

The manual monitoring of aquarium water quality is often ineffective due to time constraints and the potential delays in detecting critical parameter changes that can threaten fish health. This research develops a real-time water quality monitoring system for goldfish aquariums based on the Internet of Things (IoT) using the Sugeno fuzzy logic method. The system utilizes an Arduino Uno R4 WiFi microcontroller to process data from turbidity, Total Dissolved Solids (TDS), and water temperature sensors. The Sugeno fuzzy method is chosen for its ability to produce precise numerical outputs based on fuzzy rules. To assess water quality, the sensor data undergoes fuzzification, rule evaluation, implication/aggregation function application, and defuzzification stages. The measurement results are then processed in real-time and sent via WiFi connection to the Blynk application, which serves as a monitoring medium and sender of warning notifications to users when water quality falls outside safe limits, while information is also displayed on the OLED screen of the system. Water quality assessment is classified based on fuzzy output values into several condition categories: 0-20 (Very Good), 21-40 (Good), 41-60 (Fair), 61-80 (Poor), 81-100 (Very Poor). Based on the test results, the system has been proven to effectively detect and classify water quality conditions with high accuracy, as well as provide effective warning notifications. This system is expected to assist aquarium owners in maintaining optimal environmental conditions for the health of goldfish in an automatic, sustainable, and efficient manner.