Claim Missing Document
Check
Articles

Found 27 Documents
Search

Perbandingan Akurasi Arsitektur EfficientNet-B0, VGG16, dan Inception V3 Dalam Deteksi Tumor Ginjal Pada Citra CT-Scan Muhammad Fahri; Yanto, Febi; Syafria, Fadhilah; Abdillah, Rahmad
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.670

Abstract

Kidney dysfunction can trigger the development of various diseases, including kidney tumors. Early detection of kidney tumors is very important to increase the effectiveness of treatment and the chances of patient recovery. The use of deep learning technology in medical image classification has become a promising approach, especially in detecting abnormalities in the kidney organ through CT-Scan images. This study compares the performance of three Convolutional Neural Network (CNN) architectures, namely EfficientNet-B0, Inception-V3, and VGG16, in detecting kidney tumors. The dataset used was obtained from the kaggle website, namely CT-scan images with normal and tumor classes and divided by a ratio of training  data and test data of 80:20. The hyperparameter used is Stochastic Gradient Descent (SGD) with a learning rate of 0.001 and 0.0001. The evaluation was carried out using a confusion matrix with metrics of accuracy, precision, recall, and F1-score . According to the test outcomes, the VGG16 model configured with a 0.001 learning rate achieved the highest classification performance, recording 99.46% accuracy, precision, recall, and F1-score.
Optimasi Hyperparameter Deep Learning untuk Deteksi X-Ray Paru-Paru Menggunakan Bayesian Optimization Shahira, Fayza; Negara, Benny Sukma; Yanto, Febi; Sanjaya, Suwanto
JIEET (Journal of Information Engineering and Educational Technology) Vol. 9 No. 1 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jieet.v9n1.p53-63

Abstract

Penyakit paru-paru, seperti pneumonia dan COVID-19, merupakan ancaman serius terhadap kesehatan masyarakat, terutama jika diagnosisnya mengalami keterlambatan. Pendekatan deteksi dini melalui citra X-ray dada banyak digunakan, namun akurasinya sangat bergantung pada kemampuan sistem klasifikasi. Penelitian ini bertujuan untuk meningkatkan performa klasifikasi citra X-ray paru-paru dengan mengimplementasikan metode deep learning menggunakan arsitektur ResNet-101 yang dioptimasi menggunakan teknik Bayesian Optimization. Dataset yang digunakan dalam penelitian ini terdiri dari tiga kelas yaitu Normal, Pneumonia, dan COVID-19, masing-masing sejumlah 1.000 citra. Kinerja model hasil optimasi dibandingkan dengan model baseline pada tiga skenario split data yaitu 90:10, 80:20, 70:30. Hasil penelitian mengindikasikan bahwa model yang telah dioptimasi mampu meningkatkan performa pada seluruh metrik evaluasi mencakup akurasi, presisi, recall, spesifisitas, dan F1-score. Akurasi tertinggi tercatat sebesar 93,83% pada skenario 80:20, melampau akurasi baseline yang sebesar 91,83. Selain itu, kurva akurasi dan loss menunjukkan proses training yang stabil dan konvergen secara cepat tanpa indikasi overfitting yang signifikan. Penerapan Bayesian Optimization terbukti efektif dalam menemukan konfigurasi hyperparameter optimal yang berdampak pada peningkatan dalam tiap metrik evaluasi
Interpreting Lung Disease Detection from Chest X-rays Using Layer-wise Relevance Propagation (LRP) Fauziyyah, Laila Nurul; Negara, Benny Sukma; Irsyad, Muhammad; Iskandar, Iwan; Yanto, Febi
Journal of Artificial Intelligence and Software Engineering Vol 5, No 2 (2025): Juni On-Progress
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i2.7043

Abstract

Penelitian ini mengusulkan pendekatan klasifikasi penyakit paru berbasis citra X-ray menggunakan arsitektur VGG16 yang dilengkapi metode interpretabilitas Layer-wise Relevance Propagation (LRP). Dataset terdiri dari tiga kelas: COVID-19, pneumonia, dan normal, yang diproses melalui augmentasi dan normalisasi. Model dilatih dengan rasio data 70:30, learning rate 0.001, batch size 32, dan optimizer Adam. Hasil pelatihan menunjukkan akurasi tinggi sebesar 96,78% dengan nilai precision, recall, dan F1-score yang seimbang. Metode LRP digunakan untuk menyoroti area penting pada citra yang berkontribusi terhadap prediksi model, sehingga meningkatkan transparansi keputusan. Kontribusi utama penelitian ini adalah integrasi VGG16 dengan LRP dalam klasifikasi multi-kelas citra X-ray, yang memberikan hasil akurat sekaligus interpretasi visual yang mendukung kepercayaan dalam aplikasi medis.
Lung Disease Detection Using Gradient-Weighted Class Activation Mapping (Grad-CAM) Sofiyah, Wan; Negara, Benny Sukma; Irsyad, Muhammad; Iskandar, Iwan; Yanto, Febi
Journal of Artificial Intelligence and Software Engineering Vol 5, No 2 (2025): Juni On-Progress
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i2.7041

Abstract

Early detection of respiratory diseases such as Coronavirus Disease-19 (Covid-19) and Pneumonia is crucial for accelerating treatment and preventing more serious complications. This study proposes a method for classifying Chest X-ray (CXR) images using a Convolutional Neural Network (CNN) to distinguish between Covid-19, Pneumonia, and normal lungs. Model training involved exploring various hyperparameter combinations to find the optimal configuration. The best results were achieved with a learning rate of 0.001, 50 epochs, and a batch size of 32, yielding an accuracy of 96.33%. Evaluation was conducted using accuracy, precision, recall, F1-score, and confusion matrix metrics. This study uses Gradient-Weighted Class Activation Mapping (Grad-CAM) as a transparent interpretation tool for model decisions. The main contribution of this study is the application of Grad-CAM in multi-class CXR classification to enhance model interpretability in lung disease diagnosis.
Perbandingan Metode Naive Bayes Classifier dan Support Vector Machine dalam Analisis Sentimen Terhadap Pemilihan Presiden 2024 Prananda, Alga; Haerani, Elin; Fikry, Muhammad; Yanto, Febi
Krea-TIF: Jurnal Teknik Informatika Vol 11 No 2 (2023)
Publisher : Fakultas Teknik dan Sains, Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/krea-tif.v11i2.15364

Abstract

Salah satu sarana masyarakat untuk memberikan pendapat atau opini adalah menggunakan media sosial, khususnya youtube. Pada penelitian ini berfokus melakukan analisis sentimen terhadap Pemilihan Presiden 2024 dengan tiga kelas dan 2000 data opini, mendapatkan 875 kelas positif, 577 negatif, dan 548 netral. Tahapan penelitian melibatkan pengumpulan data, pre-processing (case folding, tokenizing, filtering, stemming), klasifikasi, pengujian, dan evaluasi. Juga melakukan perbandingan antara metode Naive Bayes Classifier (NBC) dan Support Vector Machine (SVM), menunjukkan bahwa SVM mendapat akurasi lebih baik dari NBC di setiap tipe pembagian kelas. Selain itu, hasil analisis sentimen menggunakan empat kata kunci menunjukkan dominasi sentimen positif terhadap Anies Baswedan (80.54%), Prabowo Subianto (64.76%), Calon Presiden secara umum (33.91%), dan Ganjar Pranowo (36.17%). Sentimen negatif cenderung tinggi untuk Ganjar Pranowo (51.42%) dan Prabowo Subianto (25.99%), sementara Anies Baswedan dan Calon Presiden memiliki tingkat sentimen negatif yang lebih rendah (16.53% dan 25.22%). Sentimen netral tercatat pada Prabowo Subianto (9.25%), Ganjar Pranowo (12.41%), Calon Presiden secara umum (40.87%), dan Anies Baswedan (2.93%).
Text to Speech Bahasa Jawa dialek Solo-Jogja dengan Metode VITS Wirdiani, Putri Syakira; Fikry, Muhammad; Yusra, Yusra; Yanto, Febi; Pizaini, Pizaini
TEKNIKA Vol. 19 No. 3 (2025): Teknika September 2025
Publisher : Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.16294499

Abstract

Pengembangan TTS di Indonesia masih berfokus pada Bahasa Indonesia dan bahasa asing, sementara bahasa daerah seperti Jawa dialek Solo-Jogja belum banyak tersentuh, padahal memiliki banyak penutur dan nilai budaya tinggi. Penelitian ini mengembangkan model TTS untuk dialek tersebut menggunakan metode Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech (VITS). Metode ini dipilih karena kemampuannya mengintegrasikan inferensi variasional, aliran normalisasi, dan pelatihan adversarial secara end-to-end, sehingga menghasilkan suara sintetis dengan kualitas lebih alami. Dataset berisi 450 pasangan teks dan audio dari penutur asli, dibersihkan manual dan disusun dalam format LJSpeech. Sebanyak 428 data digunakan untuk pelatihan dan 22 untuk evaluasi. Model dilatih menggunakan Coqui TTS di Google Colab dengan fonemizer eSpeak. Setelah pelatihan, model terbaik digunakan untuk menyintesis 50 kalimat uji yang dinilai oleh lima penutur asli menggunakan metode MOS. Rata-rata skor yang diperoleh adalah 4,088, melampaui standar minimum 4,0. Meski begitu, masih ada kekurangan dalam kejelasan fonem dan kealamian jeda. Hasil ini menunjukkan potensi besar TTS untuk pelestarian bahasa daerah dan pengembangan teknologi serupa untuk bahasa lokal lainnya.
KLASIFIKASI PENYAKIT TANAMAN PADI MENGGUNAKAN ARSITEKTUR DENSENET-121 DAN AUGMENTASI DATA Yanto, Febi; Agustina, Auliyah; Budianita, Elvia; Iskandar, Iwan; Syafria, Fadhilah
JOISIE (Journal Of Information Systems And Informatics Engineering) Vol 8 No 1 (2024)
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35145/joisie.v8i1.4256

Abstract

Padi (Oryza sativa) merupakan salah satu jenis tanaman pangan dimana beras sebagai hasil tanaman padi, menjadi bahan pangan utama untuk sebagian besar penduduk indonesia. Dalam proses budidaya padi, tantangan penyakit seringkali menjadi ancaman yang signifikan. Menyebarnya penyakit menyebabkan penurunan ekonomi, seperti pada tahun 2023 penurunan 0,22%. Selain itu minimnya pengetahuan dan wawasan petani dalam mengidentifikasi dan mendiagnosa jenis penyakit padi menjadi penyebab kurangnya hasil produksi padi. Oleh karena itu perlu adanya suatu klasifikasi penyakit padi menggunakan DenseNet-121 dan augmentasi data. Penelitian ini menggunakan pendekatan deep learning yakni Convolutional Neural Network (CNN) dengan arsitektur DenseNet-121 dan augmentasis data crop. DenseNet saat ini banyak digunakan untuk klasifikasi, DenseNet memanfaatkan koneksi padat antar lapisan, mengurangi jumlah parameter, memperkuat propagasi, dan mendorong pemanfaatan kembali fitur. Menggunakan dataset yang berasal dari situs Kaggle yang terdiri dari 3 jenis penyakit tanaman padi yaitu brown spot, blast, dan blihgt dengan setiap kelas terdiri dari 250 citra sehingga semua data berjumlah 750 citra. Hasil terbaik dari beberapa pengujian diperoleh akurasi terbaik sebesar 99,17% dan los 0,0355 menggunakan model DenseNEt-121, pembagian data 90;10 dengan menggunakan leraning rate 0,001 dan dropout 0,01 serta menggunakan augmentasi data, sedangkan untuk hasil akurasi tanpa augmentasi diperoleh hasil akurasi terbaik yaitu 95,00%dengan pembagian data 90;10, learning rate 0,01 dan dropuot 0,1.