Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Integrating Ensemble Learning and Information Gain for Malware Detection based on Static and Dynamic Features Sani, Ramadhan Rakhmat; Rafrastara, Fauzi Adi; Ghozi, Wildanil
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 1, February 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i1.2051

Abstract

The rapid advancement of malware poses a significant threat to devices, like personal computers and mobile phones. One of the most serious threats commonly faced is malicious software, including viruses, worms, trojan horses, and ransomware. Conventional antivirus software is becoming ineffective against the ever-evolving nature of malware, which can now take on various forms like polymorphic, metamorphic, and oligomorphic variants. These advanced malware types can not only replicate and distribute themselves, but also create unique fingerprints for each offspring. To address this challenge, a new generation of antivirus software based on machine learning is needed. This intelligent approach can detect malware based on its behavior, rather than relying on outdated fingerprint-based methods. This study explored the integration of machine learning models for malware detection using various ensemble algorithms and feature selection techniques. The study compared three ensemble algorithms: Gradient Boosting, Random Forest, and AdaBoost. It used Information Gain for feature selection, analyzing 21 features. Additionally, the study employed a public dataset called ‘Malware Static and Dynamic Features VxHeaven and VirusTotal Data Set’, which encompasses both static and dynamic malware features. The results demonstrate that the Gradient Boosting algorithm combined with Information Gain feature selection achieved the highest performance, reaching an accuracy and F1-Score of 99.2%.
XGBoost-Powered Ransomware Detection: A Gradient-Based Machine Learning Approach for Robust Performance Ghozi, Wildanil; Lestiawan, Heru; Sani, Ramadhan Rakhmat; Hussein, Jassim Nadheer; Rafrastara, Fauzi Adi
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025 (Article in Progress)
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2405

Abstract

Ransomware remains a rapidly evolving cyber threat, causing substantial financial and operational disruptions globally. Traditional signature-based detection systems are ineffective against sophisticated, zero-day attacks due to their static nature. Consequently, machine learning-based approaches offer a more effective and adaptive alternative. This study proposes an approach utilizing XGBoost for highly effective ransomware detection. We conducted a rigorous comparative analysis of prominent ensemble learning algorithms—XGBoost, Random Forest, Gradient Boosting, and AdaBoost—on the RISS Ransomware Dataset, comprising 1,524 instances. Our experimental results unequivocally demonstrate XGBoost as the superior ensemble model, achieving an impressive 97.60% accuracy and F1-Score. This performance surpassed Gradient Boosting (97.20%), Random Forest (96.94%), and AdaBoost (96.50%). Furthermore, this study benchmarked XGBoost against established state-of-the-art (SOTA) methods, including Support Vector Machine (SVM) and the SA-CNN-IS deep learning approach. The comprehensive results confirm that XGBoost not only excels among ensemble methods but also outperforms or matches these leading SOTA techniques, solidifying its position as an exceptionally effective and adaptive solution. These findings underscore the limitations of conventional security measures and emphasize the critical need for advanced, data-driven detection methods to combat the dynamic landscape of ransomware threats.