Claim Missing Document
Check
Articles

Analysis of Community Sentiment on Twitter towards COVID-19 Vaccine Booster Using Ensemble Stacking Methods Syifa Khairunnisa Salsabila; Jondri Jondri; Widi Astuti
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.1902

Abstract

The outbreak of the COVID-19 virus in Indonesia has not ended until the government has made various efforts to reduce this outbreak, such as the Large-Scale Social Restriction (PSBB) policy and the obligation of the entire community to vaccinate against COVID-19. The government has made a new policy for the community: booster vaccination for people who have already been vaccinated against COVID-19 1 and vaccinated against COVID-19 2. With this new policy, many people have given opinions on social media. One of them is Twitter social media. Positive and negative opinions given by Twitter users can be used as a source of information data. Because of these problems, researchers conducted a sentiment analysis of the booster vaccine using the Ensemble Stacking method. The dataset that has collected as many as 6,500 data from Twitter will be grouped into positive and negative class sentiments. The best results from this study using ensemble stacking and oversampling have an accuracy value of 80%.
Prediction Retweet Using User-Based and Content-Based with ANN-GA Classification Method Edvan Tazul Arifin; Jondri Jondri; Indwiarti Indwiarti
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.1931

Abstract

Current technological advances have caused rapid dissemination of information, especially on social media, one of which is Twitter. Retweeting or reposting messages is considered an easily available information diffusion mechanism provided by Twitter. By finding out why a user retweets a tweet from another person and by making this prediction we can understand how information diffuses on Twitter. In this study, Artificial Neural Network – Genetic Algorithm is used in the classification process and uses user-based and Content-Based features. Evaluation result obtained in this study are 90% accuracy, 72% precision, 83% recall, and 65% F1-Score value on the model by Oversampling.
Sentiment Analysis on Twitter Against IndiHome Providers Using Chi-Square and Ensemble Bagging Methods Anisa Nur Aini; Jondri Jondri; Widi Astuti
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.1967

Abstract

During the Covid-19 pandemic, internet usage has increased rapidly. Now the internet is used as a means in the online teaching and learning process and work from home. One of the internet service providers is IndiHome. IndiHome is an internet service provider company that has a huge number of users. A large number of IndiHome users causes frequent problems, and this is one of the factors that IndiHome users provide various kinds of opinions or responses. Sentiment analysis is used to see the opinion or opinion given by someone on a particular object or problem. This study conducted a sentiment analysis using the Chi-square and the Ensemble Bagging method with three base classifier methods, namely K-Nearest Neighbor (K-NN), Support Vector Machine (SVM), and Naive Bayes (NB). Prediction results on labels obtained from each base classifier are combined using a hard majority vote. Tweet data collection was carried out in March 2022, and 6,962 tweets were collected. This study conducted two test scenarios. Scenario 1 is a scenario without oversampling with test results showing that Ensemble Bagging has the highest accuracy value of 83.32%, and in scenario 1 with hyperparameter tuning, Ensemble Bagging has the highest accuracy value of 83.93%. Scenario 2 is a scenario with oversampling, showing that Ensemble Bagging has the highest accuracy value of 84.51%, and scenario 2 with hyperparameter tuning also shows Ensemble Bagging has the highest accuracy value of 84.56%.
Sentiment Analysis Against IndiHome and First Media Internet Providers Using Ensemble Stacking Method Arya Rafif Muhammad Fikri; Jondri Jondri; Widi Astuti
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.1969

Abstract

Customer satisfaction is one of the factors that can be used to measure the success of service in a company. In the era of the 2000s until now, internet service providers have continued to grow throughout the world, including in Indonesia. IndiHome and First Media are companies that provide internet services that make it easy for the public to communicate and obtain information. With many uses of IndiHome and First Media internet services, there are often several obstacles that cause various responses from users. Users usually channel these responses to IndiHome or First Media customer care on Twitter. The dataset for this study was obtained from Twitter using the Twitter API and the Tweepy library. The dataset that has been collected is 6.962 tweets for the IndiHome dataset and 8,089 tweets for the First Media dataset. This study conducts sentiment analysis using the Ensemble Stacking with three base classifiers and a meta classifier. The base classifier used is Naïve Bayes, K-Nearest Neighbor, and Decision Tree, while the meta classifier used is Logistic Regression. This study uses the term frequency-inverse document frequency (TF-IDF) to determine the frequency value of a word in a document. This study uses two test scenarios: testing without oversampling and testing with oversampling on the dataset. The results show that Ensemble Stacking with term frequency-inverse document frequency feature extraction produces the highest accuracy, with an accuracy value of 88.27% on the IndiHome dataset and 92.56% on the First Media dataset by oversampling on both datasets.
Analysis of Community Sentiment on Twitter towards COVID-19 Vaccine Booster Using Ensemble Bagging Methods Artamira Rizqy Amartya Maden; Jondri Jondri; Widi Astuti
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.1973

Abstract

COVID-19 is an infectious disease caused by a newly discovered type of coronavirus. Based on recommendations from the Technical Advisory Group on Virus Evolution, WHO established a new variant called Omicron. Due to the rapid spread of COVID-19, a booster vaccine was created to deal with the new virus variant. However, the strategy of giving vaccines that never ends is considered controversial by the community, and this is shown by the number of people who express their opinions, both positive and negative opinions on social media, one of which is Twitter. This research was conducted by collecting data with the help of the Twitter API. The classification method uses ensemble bagging with three basic lessons, namely Naive Bayes, K-Nearest Neighbor, and Decision Tree. Meanwhile, the feature extraction used in this research is TF-IDF (Term Frequency-Inverse Document Frequency). The performance of the ensemble bagging method by applying Hyperparameter Tuning is a precision of 0.72, recall of 0.71, F1-Score of 0.72, and accuracy of 0.72.
Topic Classification of Quranic Verses in English Translation Using Word Centrality Measurement Achmad Salim Aiman; Kemas Muslim Lhaksmana; Jondri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 5 (2022): Oktober 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v6i5.4358

Abstract

Every Muslim in the world believes that the Quran is a miracle and the words of God (Kalamullah) revealed to the Prophet Muhammad SAW to be conveyed to humans. The Quran is used by humans as a guide in dealing with all problems in every aspect of life. To study the Quran, it is necessary to know what topic is being discussed in every single verse. With the help of technology, the verses of the Quran can be given topics automatically. This task is called multilabel classification where input data can be classified into one or more categories. This research aims to apply the multilabel classification to classify the topics of the Quranic verses in English translation into 10 topics using the Word Centrality measurement as the word weighting value. Then a comparison is made to the 4 classification methods, namely SVM, Naïve Bayes, KNN, and Decision Tree. The result of the centrality measurement shows that the word ‘Allah’ is the most important or the most central word of the whole document of the Quran with the scenario using stopword removal. Furthermore, the use of word centrality value as term weighting in feature extraction can improve the performance of the classification system.
Retweet Predictions Regarding COVID-19 Vaccination Tweets through The Method of Multi Level Stacking Vena Erla Candrika; Jondri Jondri; Indwiarti Indwiarti
JINAV: Journal of Information and Visualization Vol. 4 No. 1 (2023)
Publisher : PT Mattawang Mediatama Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.jinav1518

Abstract

The rapid development of technology from day to day indirectly influences increasing social media use. This can be seen from spreading information that is very easily found on social media, one of which is Twitter. It is one of the most popular platforms for expressing people’s feelings by tweeting and interacting with other users at the same time. Various opinions about the COVID-19 vaccination began to be discussed on the Twitter platform. Moreover, most people take advantage of the feature available on Twitter, namely retweets. Users do retweet because there are many influencing factors. It can be caused by a reason that they have the same opinions and thoughts as the tweet owner, and so on. A retweet feature is also a form of information diffusion on the Twitter platform. The diffusion of information on Twitter has several factors, such as the most influential users, using hashtags or URLs, and others. In this conclusion, retweet predictions have been carried out regarding COVID-19 vaccination tweets using the features user-based and time-based through the Multi-Level Stacking classification method. This method indicates the best results when oversampling with an F1-Score of 96.23%.
PEMANFAATAN GOOGLE CLASSROOM UNTUK MENDUKUNG PEMBELAJARAN DARING DI MTS BAROKAH ARJASARI Jondri Jondri
Charity : Jurnal Pengabdian Masyarakat Vol 5 No 2 (2022): Charity-Jurnal Pengabdian Masyarakat
Publisher : PPM Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/charity.v5i2.3808

Abstract

Banyak sektor kehidupan yang terpengaruh dengan pandemik Covid-19. Termasuk dunia pendidikan, dengan ditiadakannya pertemuan tatap muka, maka proses belajar mengajar termasuk proses evaluasi dilakukan secara daring. Karena tidak dirancang dari awal, banyak sekolah dan guru-guru yang tidak siap dengan pembelajaran secara daring ini.Ada banyak fasilitas yang tersedia untuk mendukung pembelajaran secara daring, baik yang berbayar maupun yang gratis. Salah satu yang dapat digunakan secara gratis adalah google classroom. Google classroom dapat mengakomodasi kegiatan dan interaksi antara siswa dan murid didalam kelas seperti kelas offline. Antara lain guru dapat membuat kelas dan memasukkan murid, memberikan materi pelajaran, memberikan tugas dan mengadakan ujian serta melakukan penilaian. Sementara siswa dapat memperoleh materi pelajaran dari guru, mengumpulkan tugas serta melaksnakan ujian. Untuk pertemuan online langsung dapat dilakukan melalui google meet. Pengabdian masyarakat pemanfaatan google classroom untuk mendukung pembelajaran daring ini diadakan di Madrasah Tsanawiyah (Mts) Barokah Arjasari. Bentuknya berupa pelatihan bagi guru-guru. Diharapkan dengan adanya pelatihan ini akan mendukung proses belajar mengajar secara daring di MTs Barokah
Analisis dan Implementasi Jaringan Syaraf Tiruan–Propagasi Balik Dalam Memprediksi Produksi dan Konsumsi Minyak Bumi, Gas Bumi, dan Batu Bara di Indonesia Anggit Nourislam; Jondri Jondri; Siti Saadah
eProceedings of Engineering Vol 1, No 1 (2014): Desember, 2014
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ndonesia adalah salah satu negara penghasil sumber energi yang terbentuk dari fosil ataupun non fosil. Sumber energi yang tercipta dari fosil bukanlah sesuatu yang dapat dengan mudah didaur ulang yang mengakibat terjadinya krisis energi di masa mendatang. Kondisi krisis energi ini perlu diprediksi kapan terjadinya karena dapat mempengaruhi kondisi perekonomian Indonesia. Prediksi krisis energi fosil di masa mendatang dapat dilakukandengan melihat pola dari produksi dan konsumsi energi tersebut di Indonesia. Untuk mengetahui pola tersebut, dibutuhkan sebuah model yang cukup stabil terhadap perubahan karena naik turunnya produksi dan konsumsi bisa terjadi dengan cepat.Oleh sebab itu dibutuhkan algoritma jaringan syaraf tiruan yang merupakanmodel pembelajar an yang stabil terhadap perubahan pola dalam kurun waktu yang cepat. Model ini menghasilkan keluaran berupa nilai prediksi dari produksi dan konsumsi di masa mendatang yang nantinya dapat dikelompokkan apakah indeks tersebut tergolong krisis atau tidak. Kata Kunci: krisis energi, jaringan syaraf tiruan.
Penyelesaian Permasalahan Pencarian Nilai Volatilitas Optimal Dengan Metode Implied Volatility Opsi Saham Dan Particle Swarms Optimization Megi Rahma Dony; Jondri Nasri; Irma Palupi
eProceedings of Engineering Vol 3, No 2 (2016): Agustus, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Volatilitas merupakan instrument penting dalam opsi saham. Hal tersebut dikarenakan volatilitas memiliki hubungan yang kuat dengan harga opsi saham. Dengan menentukan nilai volatilitas di masa mendatang, maka kita dapat mengetahui harga opsi di waktu mendatang. Salah satu cara menentukan nilai volatilitas dengan menggunakan data volatilitas yang ada, disebut sebagai implied volatility. Implied volatility dapat ditentukan dengan menyamakan harga teoritis dengan harga pasar. Model Black-Scholes adalah salah satu model teoritis untuk menentukan harga opsi saham. Fungsi implisit dari harga teoritis dengan harga pasar, maka dapat ditentukan nilai volatilitas. Untuk mengoptimalkan nilai volatilitas, maka digunakan Particle Swarms Optimization (PSO) sebagai algoritma optimasi. Pencarian dengan PSO didasarkan pada inteligence unggas dalam mencari sumber makanan. Terdapat kecepatan dan posisi dalam pencarian menggunakan PSO untuk setiap partikel dalam menemukan nilai optimal. Hasil dari metode implied volatility dan Particle Swarms Optmization menunjukkan bahwa nilai volatilitas yang dihasilkan adalah nilai volatilitas optimal dan konvergen. dimana semakin dekat jarak antara lowerbound dan upperbound maka semakin cepat nilai menuju konvergen. Kata Kunci : Implied Volatility, Model Black-Scholes, Particle Swarm Optimization
Co-Authors Achmad Hussein Sundawa Kartamihardja Achmad Rizal Achmad Salim Aiman Aditya Kusuma Setyanegara Adnan Hassal Falah Ahmad, Fathih Adawi Akbar, Muhammad Rizqi Al Azhar Al Azhar Alfredo Alfredo Ali Zainal Abidin Assajjad Anditya Arifianto Andrian Yoga Pratama Anggit Nourislam Anggit Nourislam Anggit Nourislam Aniq Atiqi Rohmawati Anisa Nur Aini Annisa Aditsania Arief Hutauruk Arifudin Achmad Artamira Rizqy Amartya Maden Arya Rafif Muhammad Fikri Astri Asroviana Putri Aswindo Putra Bambang Ari Wahyudi Bayu Prabawa Bintang Aryo Dharmawan Bramandyo Widyarto, Edgarsa Daffa Ulayya Suhendra Danang Triantoro M Danang Triantoro Murdiansyah Danu Ardiyanto Dea Taradipa Ardiagarianti Dede Tarwidi Deni Saepudin Denny Maulana Deny Sugiarto Wiradikusuma Devy Yendriani Dieka Nugraha Karyana Ditta Febriany Sutrisna Diwan Mukti Pambuko Diwan Mukti Pambuko, Diwan Mukti Dyas Puspandari E Handayani Echa Pangersa Sugianto Oeoen Edvan Tazul Arifin Eka Handayani Eka Handayani Ema Rachmawati Emha Ainun Erlina Febriani Ersa Christian Prakoso Fahrudin Julianto Faisal HAmdani Fakhrana Kurnia Sutrisno Fani Nuraini Farisi, Kamaludin Hanif Fauzan Azhim Umsohi Fazlur Rahman Amri Febiansyah, Muhamad Fery Kun Widi Yudantyo Firdaniza Firdaniza Fitriyani Fitriyani Fransisca Arvevia Intan Angelia Ghina Khoerunnisa Giali Ghazali Guntur Virgenius Hadi, Salman Farisi Setya Hafidz Firmansyah Hafidz Firmansyah Hafiz Denasputra Halprin Abhirawa Hendra Prasetyanwar Huda Sepriandi Ibrahim Husna Aydadenta Ida Bagus Gde Narinda Giriputra Ika Puspita Dewi Ilham Muhammad Iman Nur Fakhri Imannda Kusuma Putra indwiarti Indwiarti Iqbal Dwihanandrio Irgi Aditya Rachman Irma Palupi Irwan Ramadhana Kamaludin Hanif Farisi Karina Priscilia Karina Priscilia Kemas Muslim Lhaksmana Kukuh Rahingga Permadi Kurniawan Nur Ramadhani Mahmud Dwi Sulistiyo Mahmud Sulistiyo Megi Rahma Dony Moch. Bijaksana Muh. Arfan Arsyad Muhalani, Raisul Muhamad Febiansyah Muhammad Farhan Muzakki Muhammad Fikrie Abdillah Muhammad Ghazali Suwardi Muhammad Hasan Muhammad Hasbi Ashshiddieqy Muhammad Irfan Fathurrahman Muhammad Wildan Putra Aldi Muslim Lhaksmana, Kemas Naufal Dzaky Anwari Naufal Furqan Hardifa Nurseno Bayu Aji Nurseno Bayu Aji Patma Oktaviana Puspandari, Dyas Putri Haryati Rizki Putri Haryati Rizki Putu Harry Gunawan Rafi Hafizhni Anggia Rahadian, Muhammad Rafi Raisul Muhalani Ratih Puspita Furi Redha Arifan Juanda Redi Nurjamin Renette Ersti Reza Harun Rian F. Umbara Rian F. Umbara, Rian F. Rian Febrian Umbara Rica Ning Nurhasanah Rini Shintawati Rita Rismala Rizki Luthfan Azhari Rizky Ahmad Saputra Rizky, Fariz Muhammad Roizal Manullang Siti Sa'adah Siti Saadah Sugondo Hadiyoso Supriadi, Muhamad Rifqi Syadzily , Muhammad Hasan Syifa Khairunnisa Salsabila Tedy Suwega Theo Andrew Tiara Laksmi Basuki Tifani Intan Solihati Tjokorda Agung Budi Wirayuda Ulky Parulian Wibowo Untari Novia Wisesty Untari Wisesty Varian Vianandha Vena Erla Candrika Vera Suryani Widi Astuti Widi Astuti Yahya Setiawan Yosua Marchel