Claim Missing Document
Check
Articles

Found 16 Documents
Search

OPTIMALISASI JADWAL KUNJUNGAN EKSEKUTIF PEMASARAN DENGAN 0-1 NON PREEMPTIVE GOAL PROGRAMMING Wibowo, Dibyo Adi; Purwanto, Imam Nurhadi
Jurnal Mahasiswa Matematika Vol 1, No 3 (2013)
Publisher : Jurnal Mahasiswa Matematika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

'
PENGARUH PENGHIMPUNAN SIMPANAN PIHAK KETIGA TERHADAP PEMBERIAN KREDIT KEPADA MASYARAKAT DI BANK PERKREDITAN RAKYAT widyatmoko; Dibyo Adi Wibowo
Jurnal Ekonomi dan Manajemen Vol. 1 No. 2 (2022): Juni : Jurnal Ekonomi dan Manajemen
Publisher : Asosiasi Dosen Muda Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (682.752 KB) | DOI: 10.56127/jekma.v1i2.149

Abstract

Industri Keuangan khususnya dibidang perbankan dan salah satunya Bank Perkreditan Rakyat (BPR) yang kegiatan utamanya penghimpunan dana dari masyarakat yang berupa produk deposito dan tabungan. Seterusnya dana yang didapatkan dari masyarakat tersebut disalurkan kembali berupa produk yang lain yaitu pemberian kredit kepada masyarakat. Tujuan penelitian ini agar bisa mengetahui apakah ada pengaruh yang signifikan dana simpanan dari pihak ketiga yang berupa deposito dan tabungan terhadap penyaluran dan pemberian kredit di BPR. Dalam penelitian ini populasinya yang dipakai merupakan laporan keuangan Bank Perkreditan Rakyat dalam bentuk laporan rugi laba dan laporan neraca. Adapun metode analisis data yang dipakai adalah analisa koefisien korelasi, uji koefisien korelasi dan analisa regresi linier dengan perhitungan statistis menggunakan pengujian aplikasi SPSS. Dari hasil penelitian ini menunjukkan bahwa produk tabungan dengan variabel (x1) dan deposito dengan variabel (x2) hasilnya belum mempunyai pengaruh yang signifikan terhadap pemberian kredit dengan variabel (y) pada tingkat signifikansi dengan nilai sebesar 5%. Apabila agar produk tabungan dan deposito terdapat pengaruh yang signifikan terhadap perkreditan maka pemberian kredit yang disalurkan kepada masyarakat harus ditingkatkan lagi. Dana simpanan dari masyarakat yang diperoleh BPR yang dirasa kurang dominan dan signifikan dikarenakan sebagian besar penyediaan dana yang ada di BPR untuk pemberian kredit didominasi oleh dana likuiditas yang berasal dari kantor pusat BPR.
PERAN KUALITAS KERJA DAN PELAYANAN KARYAWAN TERHADAP KEPUASAN PELANGGAN CV. PARE CENTER KEDIRI Widyatmoko Widyatmoko; Dibyo Adi Wibowo
Jurnal Inovasi Penelitian Vol 1 No 7: Desember 2020
Publisher : Sekolah Tinggi Pariwisata Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47492/jip.v1i7.1974

Abstract

The role of quality work and good employee service to the maximum, the company will get more new customers whose goal is to get profits for the company. Satisfaction that can be obtained from customers has a sense of pleasure or displeasure with the performance of employees in order to serve in the field of trading services. So that the achievement of customer satisfaction can be maximized and according to expectations for all, the purpose of this research is to obtain information about what influence the quality of employee performance and service has on customer satisfaction. The method used in analyzing the data is descriptive data analysis. While the data sources are obtained from the main or main data sources and other supports, to collect data using populations and samples. The results of the implementation of the study illustrate that the quality of work is given a variable (X1), employee service is given a variable (X2). set at 5%. So it can be concluded that there is a positive influence or contribution between the quality of work and employee service on customer satisfaction.
Pendampingan Pembelajaran Blended Learning Berbasis “PAIKEM” Siswa SMP IT “Nurul Izzah“ Kecamatan Gurah Kabupaten Kediri Widyatmoko Widyatmoko; Bonifacius Vicky Indriyono; Dibyo Adi Wibowo
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 5, No 3 (2022): September 2022
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/ja.v5i3.699

Abstract

Digitalisasi yang saat telah merambah dunia pendidikan yang berpengaruh pada metode pembelajaran. Salah satu metode yang memakai teknologi adalah Blended Learning dengan menerapkan Pembelajaran Aktif, Inovatif, Kreatif, Efektif, Menyenangkan (PAIKEM). Tujuan dari pengabdian ini karena tergolong sekolah yang baru berdiri sehingga sangat membantu kepada para siswa dan guru untuk menambah pengetahuan mengenai pembelajaran Blanded learning disaat pandemi covid-19 masih berlangsung, karena cocok untuk pembelajaran yang menggabungkan pembelajaran konvensional dan digital (e-learning). Proses pembelajaran blended learning ini belum sepenuhnya digunakan oleh mitra karena perangkat teknologi yang belum memadahi. Kegiatan pengabdian kepada masyarakat di SMP IT Nurul Izzah dengan metode presentasi, metode pelaksanaan dengan mempraktekkan langsung, dan forum diskusi melaui pendampingan tentang pembelajaran blanded learning melalui teknologi informasi. Pelaksanaan pengabdian terdiri dari tahap perencanaan, pelaksanaan dan evaluasi. Hasil dari pengabdian memaparkan materi oleh tim pengabdi tentang apa itu blanded learning, dan penggunaan aplikasi google classrrom sebagai pendukungnya. Setelah materi tersampaikan, para siswa langsung berlatih untuk mempraktekkan yang di dampingi oleh dosen dan mahasiswa. Pelaksanaan pengabdian yang dilaksanakan di tempat mitra berjalan dengan baik karena siswa mampu dengan mudah mengimplementasikan penggunaan aplikasi google classroom tanpa kendala yang berarti, dengan demikian metode pembelajaran ini dapat dimanfaatkan dan dapat digunakan sebagai metode pembelajaran alternatif.
PERANCANGAN GAME “JELAJAH SATWA” UNTUK MENGENALKAN PERMAINAN PAPAN TRADISIONAL ANAK Rizky Nur Annisa; Khamadi Khamadi; Yanuar Rahman; Dibyo Adi Wibowo
CITRAKARA Vol 3, No 3 (2021): DESEMBER 2021
Publisher : CITRAKARA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pengenalan anak terhadap permainan tradisional khususnya permainan jenis olah pikir seperti permainan papan bas-basan sepur sangat kurang. Anak lebih mengenal permainan papan digital atau digital board game karena mudah diakses. Pentingnya nilai budaya dan sosial dalam permainan tradisional menjadi alasan utama dalam upaya proses pelestarian. Penelitian ini bertujuan untuk mengenalkan permainan tradisional bas-basan sepur dengan mengadaptasikan board game modern. Metode penelitian secara deskriptif kualitatif dengan metode analisis menggunakan Multimedia Development Life Cycle (MDLC) yang terdiri dari Concept, Design, Material, Asembly, Testing, dan Distribution. Hasil penelitian berupa permainan papan digital yang mengadaptasikan aturan dan desain bas-basan sepur dengan memberikan unsur cerita pengenalan satwa endemic Indonesia sebagai konten permainan agar menarik minat anak.
PENGOPTIMALAN KEBUTUHAN GIZI PADA MENU MAKANAN PENDERITA DIABETES (Studi Kasus Rumah Sakit Ratih, Kediri) Wibowo, Dibyo Adi; Hidajat, Moch Sjamsul
MAp (Mathematics and Applications) Journal Vol 5, No 2 (2023)
Publisher : Universitas Islam Negeri Imam Bonjol Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/map.v5i2.7078

Abstract

Rumah Sakit Ratih di Kediri mungkin menghadapi masalah untuk menyusun menu makanan yang memenuhi kebutuhan nutrisi pasien diabetes melitus dengan biaya yang rendah. Untuk menyelesaikan masalah ini, metode programing linier dengan metode branch and bound digunakan untuk menghasilkan porsi makanan berupa integer yang awalnya dianalisis menggunakan pemrograman linier. Hasil perhitungan menggunakan metode branch and bound menunjukkan bahwa menu makanan untuk penderita diabetes melitus yang melakukan aktivitas olahraga dan tanpa aktivitas olahraga memiliki kebutuhan gizi optimal sebesar 7, 2 porsi bening labu siam, wortel, sup buncis, wortel, dan kentang, dan 12 porsi bening bayam, kecambah. Selama seminggu, penderita diabetes melitus tanpa melakukan aktivitas olahraga memiliki kebutuhan gizi optimal sebesar 7, 2 porsi.
Implementation of the K-Nearst Neighbor (k-NN) Algorithm in Classification of Angora and Country Cats Andriana, Wiwin; Wisnumurti, Reza; Lestari, Yuni; Indriyono, Bonifacius Vicky; Wibowo, Dibyo Adi; Udayanti, Erika Devi
Journal of Applied Intelligent System Vol. 8 No. 1 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i1.7129

Abstract

There are so many types of mixed cats from various cat breeds, so many people find it difficult to identify and classify them. Therefore, we need a method that can classify the type of cat breeds. In this study the authors used the K-Nearest Neighbor (k-NN) algorithm to make it easier to recognize and classify cat breeds based on certain characteristics. The author took samples of 2 types of cat races, namely the Anggora race and the Kampung race. The implementation stage is to determine the euclidean distance and sort it and then determine the value of K to find the nearest neighbor. In testing, the authors used 50 training data and 50 test data with 6 attributes used, namely body shape, nose width, nose height, food type, hair type and hair length. The results of the classification of cat breeds using the k-NN method obtained an accuracy rate of 94% and an error rate of 6%.
Poverty Modeling in East Java Province Using the Spatial Seemingly Unrelated Regression (Sur) Method Wibowo, Dibyo Adi; Hidajat, Moch Sjamsul; Widyatmoko, Widyatmoko
Journal of Applied Intelligent System Vol. 8 No. 2 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i2.8178

Abstract

Poverty is a complex problem because it relates to various aspects of human life. In Indonesia, there is one province that has a very high percentage of poverty, namely East Java Province. Although from year to year the poverty rate has decreased, when viewed from the national level it is still very far from the government's expectations of reducing the poverty rate. Cases of poverty can be modeled by Econometrics. Econometric models are often applied to problems involving one or more related equations. One method that can be used to solve several interrelated equations because there is a correlation error regression between one another, namely Seemingly Unrelated Regression which is usually abbreviated as SUR, in this case Spatial Seemingly Unrelated Regression (SUR-Spatial) is development that takes into account the spatial influence between locations. From the results of tests conducted in the SUR-Spatial Lagrange Multiplier model, the poverty data generated by the East Java Province is the SUR-Spatial Autoregressive Model (SUR-SAR). So with the SUR-SAR model it can be seen that the variable that has a significant effect on the percentage of poor people is the growth rate of Gross Regional Domestic Product based on the constant price of the minimum wage for each district, as well as the average length of school years. Meanwhile, the Poverty Depth Index has an effect because of the growth rate of Gross Regional Domestic Product on the basis of constant prices and the average length of schooling. The Poverty Severity Index is influenced by the growth rate of Gross Regional Domestic Product at constant prices and average years of schooling.
Covid-19 Classification using Convolutional Neural Networks Based on Adam, RMSP, and SGD Optimalization Hidajat, Moch Sjamsul; Wibowo, Dibyo Adi
(JAIS) Journal of Applied Intelligent System Vol. 8 No. 3 (2023): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i3.9492

Abstract

In this comprehensive study, a meticulous analysis of the application of Convolutional Neural Network (CNN) methodologies in the classification of Covid-19 and non-Covid-19 cases was conducted. Leveraging diverse optimization techniques such as RMS, SGD, and Adam, the research systematically evaluated the performance of the CNN model in accurately discerning intricate patterns and distinct features associated with Covid-19 pathology. the implementation of the RMS and Adam optimization methods resulted in the highest accuracy levels, with both models achieving an impressive 98% accuracy in the classification of Covid-19 and non-Covid-19 cases. Leveraging the robust capabilities of these optimization techniques, the study successfully demonstrated the effectiveness of the RMS and Adam models in enhancing the precision and reliability of the Convolutional Neural Network (CNN) for the accurate identification and differentiation of Covid-19 patterns within the medical imaging datasets. The notable achievement of 98% accuracy further emphasizes the potential of these optimization methods in advancing the capabilities of CNN-based diagnostic tools, thus contributing significantly to the ongoing efforts in Covid-19 diagnosis and management.  
Predicting Gold Price Movement Using Long Short-Term Memory Model Nagata, Azaria Beryl; Hidajat, Moch Sjamsul; Wibowo, Dibyo Adi; Widyatmoko, Widyatmoko; Yaacob, Noorayisahbe Bt Mohd
(JAIS) Journal of Applied Intelligent System Vol. 9 No. 1 (2024): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v9i1.10305

Abstract

Gold, as a valuable commodity, has been a primary focus in the global financial market. It is often utilized as an investment instrument due to the belief in its potential price appreciation. However, the unpredictable and complex movement of gold prices poses a significant challenge in investment decision-making. Therefore, this research aims to address this issue by proposing the use of the Long Short-Term Memory (LSTM) model in time series analysis. LSTM is a robust approach to understanding patterns and trends in gold price data over time. In the context of time series analysis, historical gold price data includes daily, weekly, and monthly datasets. Each model with its respective dataset is useful for identifying patterns in gold prices. The daily model achieves an MSE of 452.2284140627481 and an RMSE of 21.26566279387379. The weekly model achieves an MSE of 1346.1816584357384 and an RMSE of 36.69034830082345. The monthly model achieves an MSE of 11649.597907584808 and an RMSE of 107.93330305139747. With these RMSE results, the LSTM model can predict gold prices effectively. Based on the trained models, it can also be concluded that gold prices exhibit long-term temporal dependence.