Claim Missing Document
Check
Articles

Found 13 Documents
Search

Optimasi Mesin Pembubur Bahan Makanan untuk Mendukung Pengelolaan Limbah Organik: Penerapan Teknologi Inovatif dalam Penguraian Pakan Larva Maggot BSF Imran, Imran; Budiana, Agnes Arum; Fajrul, Rahmad; Setyawan, Reinaldi Teguh
TANJAK : Jurnal Pengabdian Kepada Masyarakat Vol 5 No 1 (2024): TANJAK : Jurnal Pengabdian Kepada Masyarakat
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/97h0r095

Abstract

Kelompok usaha Beringin Desa Selat Baru Kabupaten Bengkalis mengelola Black Soldier Fly (BSF) untuk dijadikan maggot yang mana maggot tersebut akan dijadikan pakan ternak bagi usaha yang lain. Pengolahan limbah organik menjadi maggot BSF adalah salah satu metode yang efektif dan ramah lingkungan dalam pengolahan limbah organik. Oleh karena itu, dibutuhkan sebuah mesin pembubur bahan pakan berupa batang pisang yang dapat mempermudah proses penguraian bahan makanan menjadi pakan maggot BSF. Penggerak alat ini adalah mesin bensin supaya mampu menghaluskan batang pisang dan sampah organik lainnya. Alat pembubur menggunakan motor bensin 6,5 HP dengan putaran 3000 rpm. Penggerak motor diteruskan dari mata pisau pencabik dengan yang digerakan oleh sabuk belt serta sebuah pulley. Cara kerja alat ini yaitu dengan prinsip batang pisang ditekan masuk di corong awal yang nanti akan diteruskan oleh mata pisau untuk mencacah batang pisang dan keluar menjadi bubur atau halus. Menggunakan variasi 3 pengujian diameter batang  pisang yaitu 2,5mm, 3,5mm dan 4,5mm. Hasil yang diperoleh pada pengujian tersebut adalah batang pisang berbentuk bubur yang direkomendasikan sekali pencacahan ukuran 4,5mm menghasilkan rata-rata kapasitas 558 kg/jam serta rata-rata berat yang dihasilkan adalah 6,11 kg.
Distributed temperature sensing and fault-tolerant logging for PVC-based smoke condensers using dual-channel type-K sensors Setyawan, Reinaldi Teguh; Umira, Siti; Kurniawan, Irwan; Gunawan, Gunawan; Muthoriq, Ery
Jurnal Polimesin Vol 23, No 4 (2025): August
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v23i4.7386

Abstract

The condensation process of smoke in charcoal-burning systems generates high temperatures that pose a critical thermal risk to PVC piping, which has a melting point of 85 °C. This study presents the design and implementation of a distributed temperature sensing system using dual-channel Type-K thermocouples controlled by an Arduino Uno microcontroller. The system is equipped with fault-tolerant logging and real-time monitoring features, utilizing the MAX6675 thermocouple amplifier module for digital signal acquisition. Two sensors are strategically placed along the smoke conduit to capture temperature differentials between primary and secondary zones. Experimental testing was conducted over six consecutive days with data acquisition sessions at noon and midnight. The highest recorded temperature from the primary sensor reached 83.75 °C, while the secondary sensor recorded significantly lower values, indicating a thermal gradient of 23.8 °C between inlet and outlet. Comparative calibration using an umbrella-type analog thermometer revealed a minimal deviation of 0.41 °C, confirming the system’s accuracy. Two sets of error profiling showed variations in measurement consistency, with average error rates of 13.79% and 5.93% across a 30 °C–80 °C reference range. Voltage stability was maintained throughout all test scenarios, with a constant 5 V input and 4.4 V output. The system successfully demonstrated its ability to perform dual-point thermal detection with resilient performance under fluctuating combustion conditions. This sensor-integrated platform is well-suited for thermal protection and early intervention in biomass-based liquid smoke condensation systems, particularly in small-scale applications using low-melting-point materials such as PVC.
Exergy Analysis in the Application of Exhaust Heat Utilization Through Diesel Engine Cooling Unit for Organic Rankine Cycle Burhan Hafid; Ibnu Hajar; Reinaldi Teguh Setyawan
JOURNAL OF MECHANICAL ENGINEERING MANUFACTURES MATERIALS AND ENERGY Vol. 9 No. 2 (2025): December 2025 Edition
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jmemme.v9i2.15647

Abstract

A Very rapid population growth has resulted in fossil energy being gradually depleted and environmental pollution getting worse. So far, burning fossil fuels has produced about 40% of global carbon dioxide (CO2) emissions, which are considered a major source of greenhouse gases. The Internal Combustion Engine (ICE) has become the main power source for cars, trucks, locomotives, and ships. In ordinary diesel engines, less than 45% of the fuel energy can be converted into useful work output from the crankshaft, and the remaining energy is largely lost through exhaust gases and jacket water. One way that can be done is to utilize the waste from the internal combustion engine (ICE). This method uses the Organic Rankine Cycle (ORC) system by utilizing the wasted heat generated by the Diesel engine when operating, through the engine coolant coming out of the engine gap (water jacket) to the radiator. In this study, the study focused on the exergy analysis of each component in the ORC system integrated in the diesel engine cooling unit which was simulated using Aspen Plus software. The analytical method used in this study is the exergy method with variations in ambient temperature of 20oC, 21oC, 22oC, 23oC, 24oC, 25oC, 26oC, 27 oC, and 28 oC using the working fluid R141B. The results showed that the greatest exergy destruction was found in the components of the pump, evaporator, and turbine.