Claim Missing Document
Check
Articles

Found 14 Documents
Search

PENGOLAHAN PANGAN PASCA IRRADIASI Alhanannasir, Alhanannasir; Sebayang, Nico Syahputra; Wibowojo, Ari; Nurayni, Nanda; Lestari, Refin; Malik, Maulana; Junifa, Febyanca; Yani, Ade Vera
Prosiding Seminar Nasional Biologi, Teknologi dan Kependidikan Vol. 12 No. 1 (2024): PROSIDING SEMINAR NASIONAL BIOTIK XII 2024
Publisher : Universitas Islam Negeri Ar-Raniry Banda Aceh, Aceh, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/pbio.v12i1.28108

Abstract

Usaha untuk meningkatkan kualitas dan keamanan pangan telah diperkaya dengan beragam teknologi. Salah satu cara teknologi yang dapat digunakan adalah metode iradiasi pangan. Teknologi iradiasi melibatkan penggunaan sinar ionisasi untuk mengurangi jumlah mikroorganisme patogen dan menghambat pertumbuhan mikroba spoilage serta dapat memperpanjang umur simpan produk pangan. Tujuan penelitian ini adalah untuk mendukung peningkatan mutu dan keamanan pangan secara umum Metode penelitian yang digunakan dalam studi ini adalah tinjauan pustaka.hasil dari penelitian ini adalah Selama proses pengolahan, teknologi pangan memungkinkan penggunaan bahan yang aman dan bergizi untuk meningkatkan mutu pangan. Melalui pengembangan teknologi pangan yang efisien, mutu pangan dapat ditingkatkan dengan mengurangi atau menghilangkan mikroorganisme patogen, mengoptimalkan kandungan nutrisi, dan meningkatkan karakteristik sensorik pangan. Berdasarkan hasil penelitian ini, dapat disimpulkan bahwa Beberapa penelitian menunjukkan bahwa radiasi dapat mengurangi tingkat bakteri seperti Salmonella, Listeria monocytogenes, dan Escherichia coli pada berbagai produk pangan, termasuk ayam, sapi, makanan laut, buah-buahan, sayuran, dan biji-bijian. Penerapan iradiasi pangan dianggap sebagai metode yang lebih efektif daripada metode lainnya.Katakunci: : Pengolahan pangan secara irradiasi, dan keamanan pangan
Analisis Pelayanan Angkutan Bus Sekolah di Kota Administrasi Jakarta Pusat Malik, Maulana
Pangea : Wahana Informasi Pengembangan Profesi dan Ilmu Geografi Vol 4, No 2 (2022): PANGEA: Wahana Informasi Pengembangan Profesi dan Ilmu Geogafi
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/pangea.v4i2.6610

Abstract

Penelitian ini bertujuan untuk mengetahui bagaimana penerapan pelayanan angkutan bus sekolah di wilayah Kota Administrasi Jakarta Pusat. Jenis penelitian yang dilakukan adalah deskriptif kuanitatif dengan melakukan teknik pengumpulan data wawancara dan observasi. Teknik analisis data adalah analisis data kualitatif deskriptif. Berdasarkan hasil penelitian menunjukkan bahwa enam indikator pelayanan minimal yang dipersyaratkan menunjukkan hasil yang memuaskan dan memenuhi standar pelayanan minimal. Pada indikator keselamatan menunjukkan bahwa bus dilengkapi alat keselamatan standar (APAR, P3K, Pintu Darurat) dan awak bus dilengkapi pelatihan dan sertifikasi khusus. Pada indikator keamanan menunjukkan bahwa bus telah dilengkapi alat keamanan (CCTV). Pada indikator kenyamanan menunjukkan bahwa bus memenuhi fasilitas kenyamanan (AC) dan kebersihan terjaga. Pada indikator keterjangkauan menunjukkan bahwa bus ini menjangkau siswa karena tarifnya gratis dan menghubungkan rumah dan sekolah. Pada indikator keteraturan bahwa bus ini sudah memenuhi dengan adanya LED trayek dan informasi trayek di social media. Pada indikator kesetaraan menunjukkan bahwa bus ini belum mampu menyediakan fasilitas untuk prioritas.
PENGARUH PENGAWASAN KEPALA DINAS TERHADAP KINERJA PEGAWAI TIM PEMUNGUTAN RETRIBUSI PADA DINAS PEKERJAAN UMUM DAN PENATAAN RUANG KABUPATEN INDRAMAYU: The Effect of the Head of Department's Supervision on Employee Performance in the Retribution Collection Team at the Department of Public Works and Spatial Planning, Indramayu Regency Malik, Maulana; Kurniawan, Zaki; Rohadin, Rohadin
Jurnal Investasi Vol. 11 No. 4 (2025): Jurnal Investasi Vol. 11 No 4
Publisher : Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/investasi.v11i4.361

Abstract

This study aims to analyze the influence of department head supervision on the performance of employees on the retribution collection team at the Public Works and Spatial Planning (PUPR) Department of Indramayu Regency. Supervision is a crucial managerial function that determines the effectiveness of achieving public organization goals. Through targeted supervision, leaders can ensure task execution meets established standards and work targets. This study used a descriptive quantitative approach with a survey method. The study population was all 45 employees on the retribution collection team at the PUPR Department of Indramayu Regency, and the entire population was sampled (census). Primary data were obtained through the distribution of questionnaires compiled based on supervision indicators according to Terry (2009): standard setting, implementation measurement, and corrective action. Meanwhile, employee performance was measured based on indicators of effectiveness, efficiency, responsibility, and punctuality. The results indicate that department head supervision has a positive and significant effect on the performance of employees on the retribution collection team. The correlation coefficient of 0.712 indicates a strong relationship between the two variables, while the determination value (R² = 0.507) indicates that department head supervision contributes 50.7% to the variation in employee performance. This means that the better the supervision system implemented, the higher the employee performance in carrying out regional retribution collection duties. The most dominant supervisory factors include assertiveness in providing direction, clarity of work standards, and consistency in periodic evaluations of employee performance. This study concludes that the success of employee performance within the Indramayu Regency Public Works and Public Housing Agency is determined not only by technical skills but also by the quality of supervision conducted by leaders. The main recommendations of this study are the need to improve the participatory supervision system and the implementation of two-way feedback to increase effective communication between leaders and subordinates in achieving public service targets.
Classification of Cassava Leaf Diseases Using ResNet50 CNN Architecture Based on Digital Images Malik, Maulana; Wijaya, Novan
Brilliance: Research of Artificial Intelligence Vol. 6 No. 1 (2026): Brilliance: Research of Artificial Intelligence, Article Research May 2026
Publisher : Yayasan Cita Cendekiawan Al Khwarizmi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/brilliance.v6i1.7686

Abstract

Cassava (Manihot esculenta) is an important agricultural commodity in Indonesia, but its productivity can decline due to leaf diseases such as Cassava Mosaic Disease (CMD), Cassava Green Mottle (CGM), Cassava Bacterial Blight (CBB), and Cassava Brown Streak Disease (CBSD). These four diseases exhibit overlapping visual symptoms such as chlorosis, spots, and leaf discoloration, making them difficult to distinguish manually. This study aims to create a digital- based cassava leaf image classification system using the Convolutional Neural Network (CNN) algorithm and ResNet50 architecture. The dataset used consists of 9,436 cassava leaf images taken from the TensorFlow platform and processed through resizing, normalization, selective augmentation, and the application of transfer learning. The experiment compared various optimizer configurations, learning rates, batch sizes, and balanced and unbalanced dataset scenarios. The evaluation was conducted using accuracy, precision, recall, and F1-score. The results show that the best performance was obtained on an unbalanced dataset using the Adam optimizer (learning rate 0.001; batch size 64) with an accuracy of 80.69% and an F1-score of 79.76%. Meanwhile, balancing the dataset actually reduced performance to an accuracy of 77.14% and an F1-score of 76.48%. Analysis of the loss curve and confusion matrix confirmed that the natural data distribution provided more stable generalization, although misclassification still occurred in classes with similar visual symptoms. These findings indicate that ResNet50 is effective for classifying cassava leaf diseases and has the potential to support early detection in digital agriculture practices.