Claim Missing Document
Check
Articles

Found 21 Documents
Search

A Hybrid Approach for Malicious URL Detection Using Ensemble Models and Adaptive Synthetic Sampling Sujon, Khaled Mahmud; Hassan, Rohayanti; Zainodin, Muhammad Edzuan; Salamat, Mohamad Aizi; Kasim, Shahreen; Alanda, Alde
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.4627

Abstract

Malicious URLs pose a significant cybersecurity threat, often leading to phishing attacks, malware infections, and data breaches. Early detection of these URLs is crucial for preventing security vulnerabilities and mitigating potential losses. In this paper, we propose a novel approach for malicious URL detection by combining ensemble learning methods with ADASYN-based oversampling to address the class imbalance typically found in malicious URL datasets. We evaluated three popular machine learning classifiers, including XGBoost, Random Forest, and Decision Tree, and incorporated ADASYN (Adaptive Synthetic Sampling) to handle the class-imbalanced nature of our selected dataset. Our detailed experiments demonstrate that the application of ADASYN can significantly increase the performance of the predictive model across all metrics. For instance, XGBoost saw a 2.2% improvement in accuracy, Random Forest achieved a 1.0% improvement in recall, and Decision Tree displayed a 3.0% improvement in F1-score. The Decision Tree model, in particular, showed the most substantial improvements, particularly in recall and F1-score, indicating better detection of malicious URLs. Finally, our findings in this research highlighted the potential of ensemble learning, enhanced by ADASYN, for improving malicious URL detection and demonstrated its applicability in real-world cybersecurity applications.