Claim Missing Document
Check
Articles

PENINGKATAN JIWA KEWIRAUSAHAAN SMAN 1 GIANYAR MELALUI TOPIK ENTREPENEUR MINDSET Juliana Eka Putra, I Gede; Widya Utami, Nengah; Purnama, I Nyoman; Muntina Dharma, Eddy; Satvika Iswari, Ni Made
Martabe : Jurnal Pengabdian Kepada Masyarakat Vol 7, No 10 (2024): MARTABE : JURNAL PENGABDIAN MASYARAKAT
Publisher : Universitas Muhammadiyah Tapanuli Selatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31604/jpm.v7i10.3810-3816

Abstract

SMAN 1 Gianyar merupakan salah satu sekolah unggulan di Kabupaten Gianyar yang aktif mengembangkan kurikulum kewirausahaan bagi para siswanya. Di sekolah ini, para siswa dididik dan dilatih untuk memiliki jiwa kewirausahaan melalui kolaborasi dengan praktisi dan akademisi. Upaya ini bertujuan untuk memperkuat fundamental kewirausahaan di kalangan siswa, sehingga dapat membuka wawasan mereka dalam pengembangan usaha. Melalui pengabdian masyarakat ini dirancang program kewirausahaan khusus untuk merangsang minat dan kemampuan siswa dalam berwirausaha. Program yang disusun meliputi pelatihan Entrepreneur Mindset dan bisnis model canvas, yang bertujuan memperkuat pemahaman siswa dalam pengembangan dan perancangan usaha. Kegiatan ini berhasil memberikan manfaat bagi para siswa di SMAN 1 Gianyar. Para siswa yang menjadi peserta mengetahui bagaimana pola pikir untuk menjadi seorang pengusaha dan mampu menerapkan memetakan rencana usahanya kedalam bisnis model canvas dalam mengembang kegiatan kewirausahaan. Metode tersebut dapat langsung diterapkan kepada para siswa di SMAN 1 Gianyar sehingga proses pelaksanaan belajar mengajar menjadi lebih inovatif dan menarik.
Rancang Bangun Sistem Booking Online berbasis web untuk biro wisata dengan metode Waterfall (Studi Kasus Euphoria Bali Wisata) PERMANA, LEON FARREL AGUNG; ISWARI, NI MADE SATVIKA; PURNAMA, I NYOMAN
Jurnal Tekno Kompak Vol 19, No 2 (2025): AGUSTUS (In Progress)
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jtk.v19i2.5100

Abstract

Abstrak− Proyek ini bertujuan untuk merancang dan membangun sistem booking online bagi Euphoria Bali Wisata, menggunakan metode Waterfall. Adanya sistem ini diharapkan dapat meningkatkan efisiensi operasional, memperluas jangkauan pelanggan, dan memberikan layanan yang lebih baik kepada pelanggan.Tahapan pertama dalam proyek ini adalah analisis kebutuhan, di mana dilakukan penelitian dan konsultasi dengan pemangku kepentingan untuk mengidentifikasi fitur dan fungsi utama yang diperlukan dalam sistem. Selanjutnya, pada tahap desain sistem, dibuat Diagram Entity-Relationship (ERD) dan Unified Modeling Language (UML) untuk memberikan blueprint mengenai arsitektur basis data dan aplikasi. Pada tahap implementasi, framework Laravel digunakan untuk mengembangkan website yang kokoh, skalabel, dan aman. Sistem booking online berbasis web berhasil dikembangkan dengan metode waterfall, memanfaatkan diagram perancangan, Laravel, dan pengujian Testcase untuk memastikan kesesuaian fitur.Kata Kunci: Sistem Booking Online, Biro Wisata, Metode Waterfall, Framework Laravel
Pelatihan Pengembangan Aplikasi Web Menggunakan Laravel Untuk Siswa SMKN 1 Sukawati Gianyar Bali Iswari, Ni Made Satvika; Dharma, Eddy Muntina
I-Com: Indonesian Community Journal Vol 5 No 2 (2025): I-Com: Indonesian Community Journal (Juni 2025)
Publisher : Fakultas Sains Dan Teknologi, Universitas Raden Rahmat Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/icom.v5i2.6922

Abstract

This community service activity aimed to enhance the web development skills of students at SMKN 1 Sukawati through Laravel framework training. Although students were familiar with HTML and CSS, they lacked experience with modern PHP-based frameworks like Laravel, which are essential in today’s industry. The program was carried out in four phases: requirement analysis, coordination, training, and evaluation. Conducted on April 15, 2025, the face-to-face training included theory, hands-on practice in creating CRUD (Create, Read, Update, Delete) applications, and discussion. To measure learning outcomes, a pre-test and post-test were given. The average score increased from 83.9 to 90, showing a clear improvement in students’ technical skills and understanding. The activity also sparked interest and motivation among students to further explore web development. This training is expected to be a foundation for developing digital competencies and industry-relevant portfolios. Continued training and mentoring are recommended for sustainable skill growth.
Enhancing Aspect-Based Sentiment Analysis in Tourism Reviews Through Hybrid Data Augmentation Iswari, Ni Made Satvika; Afriliana, Nunik
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.842

Abstract

The increasing reliance on online reviews in tourism has made User-Generated Content (UGC) an invaluable resource for understanding visitor perceptions. However, extracting meaningful insights from these reviews remains challenging due to their unstructured nature, aspect imbalance, and the prevalence of code-mixing between languages such as Indonesian and English—particularly in multicultural destinations like Bali. Aspect-Based Sentiment Analysis (ABSA) offers a promising solution by associating sentiment polarity with specific aspects of tourist experiences. Yet, its performance is often constrained by limited and imbalanced datasets, especially for underrepresented aspects such as sanitation and amenities. This study proposes a hybrid data augmentation framework that integrates three complementary strategies: generative augmentation using ChatGPT, semantic filtering via Sentence-BERT (SBERT), and domain refinement through Masked Language Modeling (MLM). The framework is designed to improve ABSA performance on multilingual tourism reviews by generating synthetic aspect-relevant data while preserving semantic integrity and contextual nuance. Using 398 reviews of Kuta Beach in Bali, we evaluate the effectiveness of the proposed approach across five tourism aspects: scenery, dusk, surf, amenities, and sanitation. Results show that the hybrid strategy reduces hallucination rates from 12% (using ChatGPT alone) to 3.8%, increases F1-scores for underrepresented aspects by up to 5.1%, and improves cross-lingual alignment (Cohen’s κ = 0.78). These improvements demonstrate the synergy between generative and semantic augmentation in addressing real-world ABSA challenges. The proposed method not only advances the state of multilingual ABSA but also offers practical implications for tourism analytics, allowing destination managers to better understand and respond to aspect-specific visitor feedback. The framework is extensible to other low-resource domains, were linguistic diversity and data scarcity present similar limitations.
Personalized Learning System Based on Artificial Intelligence to Enhance Learning Effectiveness: A Bibliometric Analysis Iswari, Ni Made Satvika
G-Tech: Jurnal Teknologi Terapan Vol 9 No 3 (2025): G-Tech, Vol. 9 No. 3 July 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/g-tech.v9i3.7355

Abstract

The integration of artificial intelligence (AI) in personalized learning systems has emerged as a transformative approach to address diverse educational needs and enhance learning effectiveness. However, comprehensive insights into the research landscape, trends, and challenges remain underexplored. This study aims to systematically map and analyse the development of AI-driven personalized learning systems over the past decade to understand their evolution, thematic focus, and future directions. To achieve this, a bibliometric analysis was conducted on 368 Scopus-indexed publications (2015–2025). Utilizing VOSviewer, the analysis reveals a significant surge in research output post-2021, with conference papers and articles dominating scholarly communication. Key themes include adaptive learning, machine learning algorithms, and educational innovation, while emerging clusters highlight advancements in generative AI (e.g., ChatGPT) and language models. Findings indicate that AI-based systems improve academic performance, engagement, and retention through tailored content and real-time feedback. However, challenges such as data privacy, algorithmic bias, and accessibility disparities persist. This study provides a data-driven synthesis of the field’s intellectual structure, offering actionable insights for educators, policymakers, and researchers to optimize AI’s potential in creating equitable and effective learning environments.
PENGEMBANGAN WEBSITE DESA WISATA KELIKI SEBAGAI MEDIA INFORMASI DAN PROMOSI POTENSI PARIWISATA LOKAL Adnyani, Dewa Ayu Anggi; Iswari, Ni Made Satvika; Dewi, Putri Anugrah Cahya
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 7 No 3 (2025): EDISI 25
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v7i3.5843

Abstract

Desa Wisata Keliki, yang terletak di Kecamatan Tegallalang, Gianyar, Bali, memiliki potensi pariwisata yang besar berkat kekayaan alam dan budaya lokalnya. Namun, promosi yang terbatas melalui media sosial dan kurangnya informasi terstruktur menghambat optimalisasi potensi wisata desa tersebut. Oleh karena itu, tugas akhir ini bertujuan untuk mengembangkan website resmi Desa Wisata Keliki sebagai media informasi dan promosi yang efektif. Pengembangan website ini menggunakan metode eXtreme Programming (XP), yang menekankan iterasi cepat dan kolaborasi dengan pemangku kepentingan. Website ini dirancang untuk menampilkan informasi komprehensif mengenai destinasi wisata, kuliner, kegiatan budaya, serta paket wisata yang ditawarkan. Pengembangan melibatkan beberapa tahap: identifikasi potensi desa, perancangan desain, pengkodean, pengujian, dan implementasi. Hasil akhir dari proyek ini adalah sebuah website yang mudah diakses dan user-friendly, memungkinkan wisatawan untuk merencanakan kunjungan dengan lebih baik dan mendorong peningkatan jumlah kunjungan wisatawan. Selain sebagai media promosi, website ini diharapkan dapat memperkuat partisipasi komunitas dalam pengelolaan pariwisata berbasis lokal dan meningkatkan perekonomian masyarakat melalui penjualan produk kerajinan dan layanan wisata.
Perancangan Sistem Informasi Booking Driver Berbasis Website pada Newman Bali Tour Menggunakan Metode Prototype I Gede Prana Yoga; Ni Made Satvika Iswari; I Nyoman Purnama
Jurnal ilmiah Sistem Informasi dan Ilmu Komputer Vol. 5 No. 3 (2025): November: Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juisik.v5i3.1584

Abstract

Newman Bali Tour, a community of freelance drivers in Bali, faces conventional operational challenges such as irregular passenger distribution, uncertain driver availability, and a lack of price transparency. To address these issues, this research aims to design a website-based ordering information system to improve operational effectiveness and efficiency. This system will integrate features for automatic and equitable passenger distribution based on driver availability, as well as clear price transparency. The prototype method is used in the system design, encompassing the stages of: communication (interviews), quick planning (gathering interview results and necessary data), quick design (designing UML diagrams), prototype construction, and delivery and feedback (system testing using the System Usability Scale/SUS). System testing on 20 respondents yielded an average SUS score of 78, which falls into the "Good" category, Grade C, and is considered Acceptable. The results of this research are expected to provide guidance for developers in building a better system for Newman Bali Tour.
Perancangan Sistem Booking Salon Berbasis Web pada Salon Ratih Langit I Putu Eka Indrayana; Ni Made Satvika Iswari; I Nyoman Purnama
Jurnal ilmiah Sistem Informasi dan Ilmu Komputer Vol. 5 No. 3 (2025): November: Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juisik.v5i3.1590

Abstract

The beauty service industry is experiencing digital transformation as consumer demand for convenience increases. Salon Ratih Langit, a beauty salon in Bali, still uses manual methods for booking and managing appointments, resulting in inefficiencies such as scheduling conflicts and disorganized transactions. This study aims to design a web-based booking system to streamline the reservation process and improve customer experience. Using the Software Development Life Cycle (SDLC) with a prototyping approach, the system was designed through iterative feedback from users. The system allows customers to register, choose services, schedule appointments, and make payments online, while providing admins with tools to manage bookings. The design includes UML diagrams, ERD, and interactive interfaces using Figma. Usability testing was conducted using the System Usability Scale (SUS), yielding a score of 73.33, which falls under the “Good” category. The system is expected to enhance efficiency and customer satisfaction while reducing human errors in booking processes.
DeepFake Image Detection Using Convolutional Neural Network with EfficientNet Architecture Dharma, Eddy Muntina; Iswari, Ni Made Satvika; Arimbawa, I Putu Rama Astra
G-Tech: Jurnal Teknologi Terapan Vol 9 No 4 (2025): G-Tech, Vol. 9 No. 4 October 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/g-tech.v9i4.7727

Abstract

The growing sophistication of generative Artificial Intelligence (AI) has intensified the threat posed by deepfake technologies, which are capable of producing highly realistic yet fabricated facial images and videos. These manipulated visuals can mislead the public, infringe on personal privacy, and damage reputations. This study aims to develop an effective deepfake image detection system using Convolutional Neural Networks (CNN) enhanced with EfficientNet architectures (B3–B5). The research adopts the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology, providing a structured data science framework that spans from problem definition to deployment. Three open-access datasets (Celeb-DF v2, DeeperForensics-1.0, and DFDC) are utilized to train and evaluate the models. Experimental results show that EfficientNet-B5 achieves the highest classification accuracy at 93.2%, outperforming both the baseline CNN and other EfficientNet variants. The proposed method demonstrates strong cross-dataset generalization and computational efficiency, making it suitable for real-world applications. This research contributes a comparative evaluation of scalable deepfake detection models, practical deployment insights, and a foundation for future work in explainable and real-time AI-based media forensics.
IMPLEMENTASI K-MEANS CLUSTERING UNTUK MENGELOMPOKAN DATA MURID SEBAGAI ACUAN DALAM MENENTUKAN STRATEGI PROMOSI (STUDI KASUS: ELITE KID COURSES) Lin, Lin Andriani; Iswari , Ni Made Satvika; Fredlina , Ketut Queena
JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol. 15 No. 2 (2024): September
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/jtikp.v15i2.888

Abstract

Penelitian ini bertujuan untuk Implementasi algoritma K-Means Clustering dalam mengelompokan data murid Elite Kid Courses untuk menentukan strategi promosi berdasarkan cluster yang terbentuk menggunakan teknik Promotion Mix. Proses di mulai dari survei ke Elite Kid Courses untuk melihat kendala apa yang dihadapi oleh tim marketing dalam melakukan strategi promosi, sehingga di dapatkan untuk teknik yang digunakan hanya menggunakan teknik promosi referel (member get member), kemudian menerapkan algoritma K-Means Clustering untuk mengelompokan data dan untuk teknik evaluasi menggunakan Silhouette Coefficient. Pengelompokan data murid dibagi menjadi dua kelompok atau dua cluster, dengan menggunakan empat atribut yaitu, Jenis Kelamin, Usia, Kelas dan Kecamatan. Dataset yang digunakan adalah data murid dari Elite Kid Courses dari tahun 2016-2023 sebanyak 749 data. Setelah data dikelompokan, maka dapat ditentukan teknik promosi yang cocok untuk masing-masing cluster menggunakan teknik Promotion Mix, dengan melihat katakter dari masing-masing cluster. Berdasarkan penelitian yang telah dilakukan, didapatkan bahwa hasil analisis Silhouette Coefficient menghasilkan nilai rata-rata sebesar 0.48, yang menunjukkan bahwa cluster yang terbentuk cukup baik.