Claim Missing Document
Check
Articles

Found 8 Documents
Search

Pelatihan Model Pembelajaran Interaktif Berbasis Aplikasi SLIDO di SMAN 5 Parepare Eka Qadri Nuranti; Naili Suri Intizhami; Putri Ayu Maharani; Mardhiyyah Rafrin; Muh. Agus
Jurnal Pengabdian Masyarakat Bangsa Vol. 1 No. 5 (2023): Juli
Publisher : Amirul Bangun Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59837/jpmba.v1i5.190

Abstract

Seorang pendidik selalu berusaha menciptakan suasana kelas yang menarik, kreatif, dan efektif sepanjang jadwal pembelajaran. Menyadari pentingnya keterlibatan siswa dalam proses belajar-mengajar, diperlukan penerapan metode pembelajaran interaktif yang memungkinkan terjadinya komunikasi dua arah antara guru dan siswa. Hal ini memungkinkan para siswa untuk aktif berpartisipasi dalam proses belajar-mengajar, dan menyampaikan pendapat, serta respon terhadap materi yang diajarkan. Namun, tanpa dukungan teknologi dan media yang tepat, pelaksanaan metode ini menjadi sulit dan menghambat tercapainya tujuan pembelajaran secara optimal. Meskipun banyak pendidik sudah familiar dengan konsep dan model pembelajaran interaktif, penerapannya masih belum mencapai potensinya dengan baik. Oleh karena itu, kegiatan pengabdian yang penulis lakukan difokuskan pada pemanfaatan media pembelajaran interaktif dengan menggunakan platform SLIDO, yang telah terbukti efektif dan menarik bagi para penggunanya. Kegiatan pengabdian ini diimplementasikan di sebuah Sekolah Menengah Atas, dengan tujuan untuk memberikan pelatihan dan pembekalan kepada para guru dalam mengoptimalkan penggunaan media interaktif ini.
Named entity recognition on Indonesian legal documents: a dataset and study using transformer-based models Yulianti, Evi; Bhary, Naradhipa; Abdurrohman, Jafar; Dwitilas, Fariz Wahyuzan; Nuranti, Eka Qadri; Husin, Husna Sarirah
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5489-5501

Abstract

The large volume of court decision documents in Indonesia poses a challenge for researchers to assist legal practitioners in extracting useful information from the documents. This information can also benefit the general public by improving legal transparency, law enforcement, and people's understanding of the law implementation in Indonesia. A natural language processing task that extracts important information from a document is called named entity recognition (NER). In this study, the NER task is applied to legal domains, which is then referred to as legal entity recognition (LER) task. In this task, some important legal entities, such as judges, prosecutors, and advocates, are extracted from the decision documents. A new Indonesian LER dataset is built, called IndoLER data, consisting of approximately 1K decision documents with 20 types of fine-grained legal entities. Then, the transformer-based models, such as multilingual bidirectional encoder representations from transformers (BERT) or M-BERT, Indonesian BERT or IndoBERT, Indonesian robustly optimized BERT pretraining approach (RoBERTa) or IndoRoBERTa, XLM (cross lingual language model)-RoBERTa or XLMR, are proposed to solve the Indonesian LER task using this dataset. Our experimental results show that the RoBERTa-based models, such as XLM-R and IndoRoBERTa, can outperform the state-of-the-art deep-learning baselines using BiLSTM (bidirectional long short-term memory) and BiLSTM-conditional random field (BiLSTM-CRF) approaches by 7.2% to 7.9% and 2.1% to 2.6%, respectively. XLM-RoBERTa is shown to be the best-performing model, achieving the F1-score of 0.9295.
Multi-Head Attention in Residual Networks to Improve Coral Reef Structure Classification Nuranti, Eka Qadri; Intizhami, Naili Suri; Tassakka, Muhammad Irpan Sejati; Areni, Intan Sari; Al Ghozy, Osama Iyad; Jefri, Muhammad Rivaldi
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2392

Abstract

Residual Networks (ResNet) mark a crucial advancement in convolutional neural network architecture, effectively tackling challenges like vanishing gradients for improved pattern detection in various image classification tasks. This study introduces a novel adaptation of the ResNet50 architecture that integrates a multi-head attention mechanism (MHA), coined MHA-ResNet50, for discerning coral reef structures within images. Strategic modifications are applied to the input of each stage, leading to the development of an MHA block, which is augmented by separable convolution. The deliberate inclusion of the MHA block at various stages in identity-block Resnet50, in adherence to multiscale gate principles, precedes its traversal through fully connected layers. Furthermore, we implemented the Stratified K-fold concept to ensure that each fold has a comparable proportion of each class. We successfully assessed the efficacy of the MHA-Resnet50 model in several MHA-block placement scenarios and saw improvements in the accuracy of coral reef structure predictions. The most optimal results were achieved by incorporating four attention blocks (MHA-ResNet50-4), yielding an accuracy rate of 85.23% in recognition of coral structure images, comprising a mere 409 images. This model showcases adaptability to small datasets while delivering commendable performance. The ResNet50 architecture undergoes enhancement in our proposed model by integrating multi-head attention, separable convolution, and multiscale gate principles. The MHA-ResNet50 model substantially advances accurately predicting coral reef structures, demonstrating adaptability to limited datasets. Future lines of this research involve digging deeper into the model design and using more significant amounts and classes of data to strengthen a more comprehensive range of generalizations.
PELATIHAN ROBOT SEDERHANA UNTUK TINGKATKAN LOGIKA BERFIKIR SISWA DI SMKN 2 PINRANG Muh. Agus, S.Kom., M.Kom.; Prof. Dr. Ir. Indar Chaerah Gunadin, ST.,MT.,IPM; Putri Ayu Maharani, S.T., M.Sc.; Naili Suri Intizhami, S.Kom., M.Kom.; Eka Qadri Nuranti, S.Kom., M.Kom.; Mardhiyyah Rafrin, S.T., M.Sc.; Muh. Ikhsan Amar, S.Kom., M.Kom.; Muhammad Irsyad Erlangga; Muhammad Fadel Hasyim; Rafdah Pritama Saputri; Elisabeth Tri Juliana Kandakon; Risnawati
MONSU'ANI TANO Jurnal Pengabdian Masyarakat Vol. 7 No. 2 (2024)
Publisher : Universitas Muhammadiyah Luwuk

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32529/tano.v7i2.3555

Abstract

Kegiatan pengabdian ini menawarkan solusi dengan mengajak siswa/siswi UPT SMK Negeri 2 Pinrang untuk belajar pemrograman. Melalui pembelajaran ini, siswa/siswi dilatih untuk berpikir kritis dan menyelesaikan masalah dengan metode terstruktur yang berfokus pada pengembangan robot sederhana. Hal ini sesuai dengan kebutuhan siswa/siswi di sekolah mitra, baik yang telah memiliki dasar pemrograman maupun yang belum, serta sangat diperlukan untuk menghadapi tantangan ujian dan kehidupan setelah lulus sekolah. Kegiatan ini dilaksanakan melalui metode pelatihan dan pendampingan langsung dirangkaian dengan test dan lomba. Pelaksanaan pre-test dan pemberian materi logika matematika serta pemrograman Arduino sebagai dasar untuk praktikum pembuatan robot sederhana, dilanjutkan dengan post-test dan lomba. Terjadi peningkatan dari nilai rata-rata 50,57% pada pre-test menjadi 63,4% pada post-test, dengan peningkatan sebesar 12,83%. Lomba tersebut menghasilkan tiga siswa dengan waktu tercepat dalam merangkai komponen robot. Diharapkan materi yang telah diberikan dapat memberdayakan siswa/siswi untuk menjadi pencipta teknologi yang berharga setelah mereka menyelesaikan pendidikan mereka
OPTIMIZATION OF BACKTRACKING ALGORITHM WITH HEURISTIC STRATEGY FOR LOGIC-BASED SORTING PUZZLE GAME SOLVING Nuranti, Eka Qadri; Intizhami, Naili Suri; Hasanah, Primadina
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 6 (2024): JUTIF Volume 5, Number 6, Desember 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.6.4031

Abstract

Puzzle Game Sorting is a logic-based puzzle game where players must transfer colored balls into tubes until each tube contains only one color. Although it appears simple, the game becomes increasingly challenging at higher levels, testing players’ logical thinking and patience. This study proposes using the backtracking algorithm combined with optimization strategies, such as conflict heuristics and lookahead, to address players’ challenges at advanced levels. The test results indicate that the optimized backtracking algorithm can solve the game faster and with more efficient steps compared to manual methods. Specifically, heuristic optimization strategies significantly improved performance, reducing execution time by up to 91.4% and the number of steps by up to 76.9% at the most complex levels. These findings demonstrate that combining the backtracking algorithm and optimization strategies is an effective solution for solving puzzles in Sorting, particularly at levels with increasing complexity.
Improving Semantic Segmentation of Flood Areas Using Rotation and Flipping-Based Feature Augmentation Intizhami, Naili Suri; Nuranti, Eka Qadri; Bahar, Nur Inaya
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4564

Abstract

Semantic segmentation is one of the powerful methods for analyzing flood video or picture data captured by smartphones. However, achieving accurate semantic segmentation requires the application of several methods. In this work, we address the task of feature augmentation approach using rotation (90°, 180°, 270°) and flipping (horizontal, vertical) to improve semantic segmentation of flood areas in Parepare city using a Fully Convolutional Network (FCN). The experimental results demonstrate that the best augmentation scenario 270° rotation achieved an accuracy of 88%  and 90° rotation achieved an mean Intersection over Union (mIoU) of 43%, significantly outperforming the baseline FCN model without augmentation, which achieved 86% accuracy and 35% mIoU.  
Pelatihan Pembuatan Modul Pembelajaran Interaktif Berbasis Aplikasi Quizizz dan Google Slide bagi Guru SMAN 5 Parepare Naili Suri Intizhami; Indar Chaerah Gunadin; Eka Qadri Nuranti; Putri Ayu Maharani; Mardhiyyah Rafrin; Muh Agus; Osama Iyad Al Ghozy; Nur Inaya Bahar; Muhammad Rivaldi Jefri; Muhammad Aldi Alfatih
Jurnal Pengabdian UNDIKMA Vol. 4 No. 4 (2023): November
Publisher : LPPM Universitas Pendidikan Mandalika (UNDIKMA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/jpu.v4i4.9218

Abstract

This community service project aims to enhance the knowledge and skills of SMAN 5 Parepare teachers in developing interactive learning modules based on Google Slide and Quizizz applications and implementing Image Recognition technology. This method of implementation used training and reinforcement. This activity's evaluation instrument employed questionnaires, which were then descriptively analyzed using pre-test and post-test data. The results of this study indicated that teachers at SMAN 5 Parepare could develop interactive learning modules based on Google Slides and Quizizz adapted to the subject matter being taught. 38% of all questions answered correctly by the participants in this activity improved their teacher's skills.
Pelatihan MIT App Inventor sebagai Upaya Meningkatkan Kemampuan Berpikir Logis Siswa SMAN 4 Parepare Maharani, Putri Ayu; Gunadin, Indar Chaerah; Intizhami, Naili Suri; Nuranti, Eka Qadri; Rafrin, Mardhiyyah; Agus, Muh.; Iskandar, M. Fauzan; Yunus, Sitti Rahma; Al-Fauzi S., Muhammad Faruq; Tunru, Muh. Abubakar
Jurnal Pengabdian UNDIKMA Vol. 5 No. 1 (2024): February
Publisher : LPPM Universitas Pendidikan Mandalika (UNDIKMA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/jpu.v5i1.9786

Abstract

This community service activity aims to improve the logical thinking abilities of SMAN 4 Parepare students by teaching the application of mathematical logic in compiling computer instructions based on MIT App Inventor. The method for implementing this service was problem-based learning training by taking the example of the traditional game of rock-paper-scissors as a learning case. Next, create a rock-paper-scissors game program using MIT App Inventor as a student learning experience in applying mathematical logic concepts. The evaluation instrument employed was a questionnaire to collect pre-test and post-test results, which were then analyzed using descriptive statistics and paired sample t-tests. The results of this service showed an increase in the average participant score on the post-test results, where the average pre-test score was 7.24 out of 15, while the average post-test score was 9.17 out of 15.