Claim Missing Document
Check
Articles

Found 32 Documents
Search

APLIKASI PENCARIAN LOKASI DAN INFORMASI TAMAN PENDIDIKAN AL-QUR’AN KOTA KUPANG BERBASIS ANDROID Hariyanto, Rudi; Malahina, Edwin A. U.; Sumarlin, Sumarlin
HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi Vol. 11 No. 2 (2020): Jurnal HOAQ - Teknologi Informasi
Publisher : STIKOM Uyelindo Kupang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52972/hoaq.vol11no2.p81-89

Abstract

Kupang city is one of the cities in Indonesia that has a high level of religious tolerance, this is supported by the Peace Gong archipelago, but this is inversely proportional to religious education in the city of Kupang, especially the Islamic religious education because of lack of religious instruction in formal education institutions . The Qur'an Educational Park is an institution that plays an important role in providing religious education, the procedure of reading and understanding al-quran. But the lack of community knowledge about the location of the Quranic Education Park has left the public confused to find and choose the right religious education institutions to give their children education about religion. For that, there need to be built an application that can display the location and information about the Qur'an Educational Park located in the city of Kupang. With Android-based development, it will simplify the community because Android smartphone users are quite a lot and ensure the accuracy of user location data. In addition to showing the location, the application will also provide information about the Qur'an Educational Park in Kupang City that has been marked on google maps.
Klasifikasi Jenis Penyakit Mata Katarak Menggunakan Metode K-Nearest Neighbors (KNN) Rizki Ikhwan Pamuji; Dian Ahkam Sani; Rudi Hariyanto
CESS (Journal of Computer Engineering, System and Science) Vol. 10 No. 2 (2025): Juli 2025
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/cess.v10i2.67786

Abstract

Katarak merupakan gangguan penglihatan yang terjadi akibat kekeruhan pada lensa mata, umumnya disebabkan oleh proses degeneratif, paparan radikal bebas, atau gangguan lain seperti glaukoma. Diagnosis dini sangat penting untuk mencegah komplikasi, namun metode konvensional memerlukan pemeriksaan manual yang memakan waktu. Penelitian ini bertujuan mengembangkan model klasifikasi katarak menggunakan algoritma K-Nearest Neighbors (KNN), sebuah pendekatan non-parametrik yang menentukan kelas berdasarkan kedekatan fitur terhadap data pelatihan. Dataset yang digunakan terdiri dari 300 data dengan 26 atribut, dan dibagi dengan rasio 80:20. Hasil evaluasi menunjukkan bahwa KNN dengan parameter k=3 mampu menghasilkan akurasi sebesar 98,33% dengan precision 99%, recall 99%, serta f1-score 99% pada macro average dan pada weight average mendapatkan precision 98%, recall 98%, serta f-score 98%. Temuan ini menunjukkan bahwa KNN efektif dalam mendeteksi jenis penyakit mata katarak, meskipun masih terdapat ruang untuk pengembangan lebih lanjut melalui peningkatan jumlah data, teknik preprocessing yang lebih variatif, serta eksplorasi metode klasifikasi lain guna memperoleh hasil yang lebih optimal.